saberdoesthestars

Just another WordPress.com site

Saber Does The Stars

Filed under: Astronomy, Moon, Music, Stargazing, Uncategorized
July 5, 2011
\section*{Stephen Saber (SaberScorpX)}

Stephen Saber has been an avid observational astronomer for many years. A musician and songwriter by trade, his passion for the night sky has led him to star parties and celestial events in 30 states, Canada, Mexico, and the Carribean. His astronomy articles have appeared in numerous regional and national publications. Saber is also the author of the Starhoppers Guide to the Herschel 400 and namesake of the lunar phase phenomenon known as Saber's beads. His extensive outreach efforts inspired the first permanent camp observatory built for the Boy Scouts of America. Saber has received the Master Observer's award from the Astronomical League and is currently a member of the Quad
Cities Popular Astronomy Club.
[all contents within are free use and may be reprinted with author/website acknowledgement]
Also see Saber Does The Stars (Vol 2: the Index Catalog) at http://www.c14isawesome.blogspot.com

```
*****
```


Contents

Running the M-Cubed

Concordiem Borealis
Observatories: The Thunderdome
Stellar Reactions: Tales From The Eyepiece
Herschel II Program Search Sequences
Lunar Phenomena: Saber's Beads
Binocular Stargazing
150 Doublestars For Binoculars
Have You Hugged An Astrologer Lately
Post Perihelion: Astroforum Candy
Memorizing the Maria: Jack and the Mutant Beaver
Asterisms: Ally's Braid
A Matter Of Time
The Parallax Project
Caldwell Fever

Running the M-Cubed (Messier Marathon from Memory)
 Stephen Saber

Running the M-Cubed is an advanced approach to the Messier Marathon requiring the observer to already be very familiar with each target's position. Sharpshooting the Messiers for a few seasons before even hearing of the MCubed, my approach included committing the entire sequence to memory. For easier memorization the 110 Messier objects are broken down into 10 groups, each corresponding to a specific area of the sky. Numeric patterns are added whenever possible while still following the basic search sequence. I have used this technique to manually hunt and observe all 110 Messiers from Arizona, and 109 on four occasions from $41^{\circ} \mathrm{N}$ latitude without the aid of starcharts, notes, or red light. Very liberating.
Begin by memorizing the first string of numbers while visualizing their positions. As you become comfortable with these, repeat the process for the subsequent groups.

Evening Rush

$74,77,33,31,32,110,52,103,76,34,45$

Southern Comfort

$79,42,43,78,50,41,93,46,47,48$

Early Ecliptic

$1,35,37,36,38,44,67,95,96,105,65,66$

The Big Bear

81, 82, 97, 108, 109, 40, 106, 94, 63, 51, 101, 102
Downtown Virgo
98, 99, 100, 85, 84, 86, 87, 88, 91, 90, 89
Virgo and the 'Burbs
$58,59,60,49,61,64,53,3,104,68,83$
Easy East
$5,13,92,57,56,39,29,27,71$
Got Globulars?
$12,10,14,107,9,4,80,62,19$
Cruising the Milky Way
$11,26,16,17,18,24,25,23,21,20,8,28,22$
Homestretch
$6,7,69,70,54,55,75,15,2,72,73,30$
With repetition the individual strings will eventually link together as the entire search sequence is committed to memory. (note: the strings' titles are by no means written in stone, and can be substituted for any phrase the observer finds mnemonically helpful. also, the classic m-cubed only requires memorization of the target
positions- not the search sequence.)
I encourage those interested in attempting this method to practice with mini-M-Cubes throughout the year, going over each leg in sections.
Many end up suprised by the number of object locations that are already familiar outside of their chart and starhopping routine.
[Left Ascension, Feb '04]
(Photo credit: SEDS)

Concordiem Borealis

Stephen Saber

This collection of DSOs and doublestars unifies the Astronomical League's Messier, Bino Deepsky, Caldwell (the 76 most northern), and Double Star targets as well as the RASC's 110 Finest NGC Objects (90 of which are Herschel 400s). Three doubles I couldn't live without are also included.
Designed with those tackling the Observe Programs in mind, the overlapping entries have been omitted-leaving a treasure chest of $400+$ gems for northern observers.
Grouped by constellation, the basic data and corresponding Pocket Sky Atlas chart follow each entry.
ANDROMEDA type/mag/radec/psa
M31 GX $3.50043+411903$
M32 GX $8.20043+405503$
M110 GX $8.00041+414403$
C28/NGC752 OC $5.70158+374302$
C23/NGC891 GX 10.0 0223+4223 02
C22/NGC7662 PN 9.0 2326+4236 03
gammaAnd DS 2.3 0204+4222 02
AQUARIUS
M2 GC 6.5 2134-0047 77
M72 GC 9.4 2054-1230 77
M73 AS 9.0 2059-1236 77
C55/NGC7009 PN 8.0 2105-1120 77
C63/NGC7293 PN 7.5 2230-2046 76
zetaAqr DS 4.3 2229-0001 77
94 Aqr DS 5.3 2319-1328 76
AQUILA
NGC6709 OC 6.7 1852+1022 65
NGC6781 PN 12.0 1919+0634 65
57 Aql DS 5.8 1955-0814 66

ARIES

NGC772 GX $10.30200+190304$
gammaAri DS 4.8 0154+1918 04
lambdaAri DS $4.90158+233604$

AURIGA
M36 OC $6.00537+340812$
M37 OC $5.60553+323312$
M38 OC $6.40529+355012$
NGC1893 OC $7.50523+332412$
NGC1907 OC $8.20529+351912$
NGC1931 CN $11.30532+341512$
NGC2281 OC $5.40650+410323$
C31/IC405 EN - 0517+3416 12
thetaAur DS $2.70600+371312$

BOOTES

C45/NGC5248 GX 10.2 1338+0851 44
NGC5466 GC 9.1 1406+2830 44
deltaBoo DS 3.5 1516+3319 42
iotaBoo DS 4.9 1416+5122 42
kappaBoo DS $4.61414+514742$
epsilonBoo DS 2.5 1445+2704 44
muBoo DS 4.3 1525+3723 42
piBoo DS 4.9 1441+1625 44
xiBoo DS 4.7 1451+1906 44
CAMELOPARDALIS
NGC1501 PN $13.00408+605613$
C7/NGC2403 GX $8.40738+653521$
NGC2655 GX $10.10857+781121$
C5/IC342 GX $9.10348+680711$
Stock23 OC $6.50316+600211$
Kemble1 OC $4.00358+630611$
1 Cam DS $5.70432+535512$
32 Cam DS 5.3 1249+8325 21
CANCER
M44 OC $3.10841+195724$
M67 OC $6.90851+114724$
C48/NGC2775 GX 10.3 0911+0700 24
iotaCnc DS $4.20847+284624$
zetaCnc DS $5.50812+173924$
CANES VENATICI
M3 GC 6.3 1343+2821 44
M51 GX $8.41330+471043$
M63 GX $8.61316+415943$
M94 GX 8.2 1251+4104 43
M106 GX 8.3 1219+4715 43
NGC4111 GX $10.81208+430143$
NGC4214 GX 9.7 1216+3617 43
C26/NGC4244 GX 10.2 1218+3746 43
C21/NGC4449 GX 9.4 1229+4403 43

NGC4490 GX 9.8 1231+4135 43
C32/NGC4631 GX 9.3 1242+3229 43
NGC4656/7 GX 10.4 1244+3207 43
C29/NGC5005 GX 9.8 1311+3700 43
NGC5033 GX 10.1 1314+3633 43
alphaCVn DS 2.9 1256+3819 43
CANIS MAJOR

M41 OC 4.5 0646-2045 27
NGC2359 EN 11.0 0719-1313 27
C58/NGC2360 OC 7.2 0718-1538 27
C64/NGC2362 OC 4.1 0719-2457 27
epsilonCMa DS 1.5 0659-2858 27
h3945 DS 5.0 0717-2318 27

CAPRICORNUS

M30 GC 7.5 2141-2309 77
alphaCap DS 3.6 2018-1233 66
betaCap DS 3.4 2021-1447 66
CASSIOPEIA
M52 OC 6.9 2325+6138 03
M103 OC $7.40134+604403$
NGC129 OC $6.50030+601703$
C17/NGC147 GX 9.3 0034+4833 03
C18/NGC185 GX 9.2 0039+4823 03
NGC281 EN $7.00053+564003$
C13/NGC457 OC $6.40120+582303$
C8/NGC559 OC $9.50130+632001$
C10/NGC663 OC $7.10147+611701$
C11/NGC7635 EN — 2321+6115 71
NGC7789 OC $6.72357+564703$
IC289 PN $13.10311+612102$
Cr463 OC $5.70148+715701$
Stock2 OC $4.40215+591601$
Mark6 OC $7.10230+603901$
Mel15 OC $6.50233+612701$
Tr3 OC $7.00312+631501$
etaCas DS $3.40049+574903$
iotaCas DS $4.00229+672401$
sigmaCas DS $5.02359+554503$

CEPHEUS

C2/NGC40 PN $11.00013+723571$
C1/NGC188 OC $8.10045+852371$
NGC6939 OC $7.82032+604061$
C12/NGC6946 GX 8.9 2035+6011 61
C4/NGC7023 CN 7.0 2101+6812 71
NGC7129 RN $12.02141+660871$
NGC7160 OC $6.12154+623871$

NGC7235 OC $7.72213+571971$
C9/Sh2-155 DN - 2257+6237 71
betaCep DS 3.2 2129+7034 71
deltaCep DS 3.9 2229+5825 71
xiCep DS 4.4 2204+6438 71
Struve 2816 DS 5.6 2139+5729 73

CETUS

M77 GX $8.80243+000104$
C56/NGC246 PN 8.0 0047-1150 07
C62/NGC247 GX 8.9 0047-2043 07
NGC936 GX 10.1 0228-0107 04
C51/IC1613 GX $9.30105+020705$
gammaCet DS $3.50243+031404$

COLUMBA

C73/NGC1851 GC 7.3 0514-4003 18

COMA BERENICES

M53 GC 7.7 1313+1807 45
M64 GX $8.51257+213845$
M85 GX $9.21226+1808$ C
M88 GX 9.5 1232+1422 C
M91 GX 10.2 1236+1427 C
M98 GX $10.11214+1451$ C
M99 GX 9.8 1219+1422 C
M100 GX 9.4 1223+1546 C
NGC4274 GX 10.4 1220+2934 45
NGC4414 GX $10.31227+311045$
NGC4494 GX 9.9 1232+2544 45
C36/NGC4559 GX 9.9 1236+2755 45
C38/NGC4565 GX 9.6 1237+2556 45
NGC4725 GX 9.2 1251+2527 45
C35/NGC4889 GX 11.4 1300+2755 45
Mel 111 OC $1.81225+260045$
24 Com DS $5.21235+182345$
CORONA AUSTRALIS
C68/NGC6729 EN 9.7 1902-3657 69
CORONA BOREALIS
zetaCrB DS 5.1 1539+3638 53
sigmaCrB DS $5.61615+335253$
CORVUS
C60/NGC4038 GX 10.7 1202-1855 47
C61/NGC4039 GX 13.0 1202-1856 47
NGC4361 PN 10.0 1225-1851 47

CYGNUS
M29 OC 6.6 2024+3834 62
M39 OC 4.6 2132+4828 62
NGC6819 OC 7.3 1942+4012 62
C15/NGC6826 PN 10.0 1945+5032 62
C27/NGC6888 EN 7.5 2012+3822 62
NGC6910 OC 7.4 2023+4049 62
C34/NGC6960 SN - 2046+3045 62
C33/NGC6992-5 SN - 2057+3145 62
C20/NGC7000 EN 6.0 2059+4422 62
NGC7027 PN $10.02107+421662$
NGC7063 OC 7.0 2125+3632 62
C19/IC5146 CN $10.02154+471873$
betaCyg DS 3.1 1931+2758 62
31 Cyg DS 3.8 2014+4644 62
61 Cyg DS 5.2 2107+3845 62
DELPHINUS
C47/NGC6934 GC 8.7 2034+0724 64
C42/NGC7006 GC $10.62102+161164$
gammaDel DS 4.5 2047+1607 64
DRACO
M102 GX 10.0 1507+5544 42
C3/NGC4236 GX 9.7 1217+6928 41
NGC5907 GX $10.41516+561942$
NGC6503 GX 10.2 1749+7009 61
C6/NGC6543 PN 8.8 1759+6638 51
muDra DS 5.7 1705+5428 52
nuDra DS $4.91732+551152$
psiDra DS 4.9 1742+7209 51
16/17 Dra DS 5.4 1636+5255 52
40/41 Dra DS 5.7 1800+8000 51
ERIDANIS
NGC1232 GX 9.9 0310-2035 17
NGC1535 PN 10.4 0414-1244 17
32 Eri DS 4.8 0354-0257 17
55 Eri DS 6.7 0444-0848 16
FORNAX
C67/NGC1097 GX 9.2 0246-3017 06
GEMINI

M35 OC $5.10609+242025$
NGC2158 OC $8.60608+240625$
NGC2371/2 PN $11.00726+292925$
C39/NGC2392 PN 9.9 0729+2055 25
alphaGem DS $1.90735+315325$
deltaGem DS $3.50720+215925$

HERCULES

M13 GC 5.9 1642+3627 52
M92 GC $6.51717+430752$
NGC6210 PN 9.0 1645+234854
alphaHer DS 3.5 1715+1423 52
deltaHer DS $3.11715+245054$
kappaHer DS 5.3 1608+1703 55
rhoHer DS 4.6 1724+3709 52
95 Her DS $5.01802+213654$
HYDRA
M48 OC 5.8 0814-0549 26
M68 GC 8.2 1240-2648 47
M83 GX 7.6 1337-2954 47
C59/NGC3242 PN 8.6 1025-1838 37
C66/NGC5694 GC 10.2 1440-2632 46
N Hya DS 5.8 1132-2916 36
LACERTA
NGC7209 OC $7.72205+463073$
C16/NGC7243 OC $6.42215+495373$
8 Lac DS 5.7 2236+3938 72
LEO
M65 GX 9.3 1119+1302 34
M66 GX 9.0 1121+1256 34
M95 GX 9.7 1044+1139 34
M96 GX 9.2 1047+1146 34
M105 GX 9.3 1048+1232 34
NGC2903 GX $8.90933+212835$
NGC3384 GX 10.0 1049+1235 34
NGC3521 GX 8.9 1106-0005 34
NGC3607 GX 10.0 1117+1800 34
C40/NGC3626 GX 10.9 1121+1818 34
NGC3628 GX 9.5 1121+1333 34
alphaLeo DS 1.4 1008+1158 35
gammaLeo DS 2.2 1020+1951 35
54 Leo DS 4.5 1056+2445 34
LEO MINOR

NGC3003 GX $11.70949+332333$
NGC3344 GX 10.0 1044+2452 35
NGC3432 GX 11.3 1023+3634 33
LEPUS
M79 GC 8.0 0525-2433 16
HR1944 DS 6.4 0539-1751 16
gammaLep DS 3.8 0545-2227 16
LIBRA
NGC5897 GC 8.6 1518-2103 57
alphaLib DS 2.8 1451-1602 57
LYNX
C25/NGC2419 GC $10.40739+385223$
NGC2683 GX $9.70853+332322$
12 Lyn DS $5.40646+592723$
19 Lyn DS $5.60723+551723$
38 Lyn DS 3.9 0919+3648 22
LYRA
M56 GC 8.3 1917+3012 63
M57 PN 9.0 1854+3303 63
betaLyr DS 3.4 1850+3322 63
zetaLyr DS 4.3 1845+3736 63
epsilonLyr DS 5.0 1844+3940 63
Struve 2404 DS 6.9 1851+1059 63
O.Struve 525 DS $6.01855+335863$

MONOCEROS

M50 OC 5.9 0704-0821 27
NGC2232 OC 3.9 0627-0445 27
C50/NGC2244 OC 4.8 0633+0452 25
NGC2251 OC $7.30635+082225$
C46/NGC2261 EN $10.00639+084425$
NGC2264 CN 3.9 0642+0952 25
C49/NGC2237+ EN - 0631+0503 25
NGC2301 OC 6.0 0652+0027 25
NGC2343 OC 6.7 0709-1040 27
C54/NGC2506 OC 7.6 0801-1048 26
betaMon DS 4.7 0629-0702 27
epsilonMon DS 4.5 0624+0436 25
OPHIUCHUS
M9 GC 7.9 1720-1831 56
M10 GC 6.6 1658-0126 56
M12 GC 6.6 1648-0158 56
M14 GC 7.6 1738-0315 56

M19 GC 7.2 1703-2617 56
M62 GC 6.6 1702-3008 56
M107 GC 8.1 1633-1304 56
NGC6369 PN 13.0 1730-2346 56
NGC6572 PN 9.0 1812+0651 65
NGC6633 OC 4.6 1828+0634 65
IC4665 OC 4.2 1746+0543 54
omicronOph DS 5.4 1718-2417 56
36 Oph DS 5.1 1715-2636 56
70 Oph DS 4.2 1806+0230 65
ORION
M42 EN 3.9 0536-0527 16
M43 EN 9.0 0536-0516 16
M78 RN $8.00547+000316$
NGC1662 OC 6.4 0449+1057 14
NGC1788 RN - 0507-0320 16
NGC1973+ EN - 0535-0444 B
NGC1981 OC 4.6 0536-0426 16
NGC2022 PN $12.00543+090514$
NGC2024 EN - 0542-0151 14
NGC2169 OC 5.9 0609+1357 14
NGC2194 OC 8.5 0614+1248 14
betaOri DS 0.1 0515-0812 16
deltaOri DS 2.2 0532-0018 16
theta1 Ori DS $5.40536-0523$ B
theta2 Ori DS $5.20536-0525$ B
iotaOri DS $2.80535-0555$ B
lambdaOri DS $3.60535+095614$
sigmaOri DS 4.0 0539-0236 16
zetaOri DS 1.9 0541-0157 16
Struve 747 DS $4.80535-0600$ B
PEGASUS
M15 GC $6.42130+121275$
C30/NGC7331 GX 9.5 2237+3427 72
C44/NGC7479 GX $11.02305+122274$
C43/NGC7814 GX 10.5 0004+1612 74
epsilonPeg DS $2.42144+095275$
PERSEUS
M34 OC 5.2 0243+4249 13
M76 PN $12.00143+513613$
C14/NGC869 OC $4.00220+571113$
C14/NGC884 OC $4.00223+570913$
NGC1023 GX $9.50241+390613$
C24/NGC1275 GX 11.6 0320+4133 13
NGC1342 OC $6.70332+372213$
NGC1491 EN - 0404+5120 13
NGC1528 OC $6.40416+511513$

NGC1582 OC $7.00433+435212$
Tr2 OC 5.9 0237+5559 13
Mel20 OC $1.20322+490013$
etaPer DS $3.80251+555413$
Struve 331 DS 5.3 0301+5221 13

PISCES

M74 GX 9.2 0137+1549 04 alphaPsc DS $4.20202+024604$
zetaPsc DS $5.60113+073505$
psil Psc DS $5.60106+212805$
65 Psc DS 6.3 0050+2743 05

PUPPIS

M46 OC 6.1 0742-1450 27
M47 OC 4.4 0737-1431 27
M93 OC 6.2 0745-2353 26
NGC2440 PN 11.0 0742-1814 26
C71/NGC2477 OC 5.8 0753-3834 28
NGC2527 OC 6.5 0806-2811 28
NGC2539 OC 6.5 0811-1251 26
NGC2571 OC 7.0 0819-2946 28
kappaPup DS 4.5 0739-2648 27
SAGITTA

M71 GC 8.3 1954+1848 64

SAGITTARIUS

M8 CN 5.8 1804-2423 67
M17 EN 6.0 1821-1611 67
M18 OC 6.9 1820-1708 67
M20 EN 6.3 1803-2302 67
M21 OC 5.9 1805-2635 67
M22 GC 5.1 1837-2354 67
M23 OC 5.5 1757-1901 67
M24 SC 4.6 1817-1850 67
M25 OC 4.6 1832-1915 67
M28 GC 6.9 1825-2452 67
M54 GC 7.7 1856-3028 67
M55 GC 7.0 1940-3057 66
M69 GC 7.7 1832-3221 67
M70 GC 8.1 1844-3217 67
M75 GC 8.6 2007-2154 66
NGC6445 PN 13.0 1750-2001 67
NGC6520 OC 8.0 1804-2754 67
NGC6716 OC 6.9 1855-1952 67
NGC6818 PN 10.0 1944-1408 66
C57/NGC6822 GX 9.0 1945-1447 66
SCORPIUS

M4 GC 5.9 1624-2633 56
M6 OC 4.2 1741-3213 58
M7 OC 3.3 1754-3449 58
M80 GC 7.2 1617-2300 56
C75/NGC6124 OC 5.8 1626-4041 58
C76/NGC6231 OC 2.6 1654-4148
C69/NGC6302 PN 13.0 1714-370758
betaSco DS 2.6 1605-1948 56
nuSco DS 4.3 1612-1928 56
xiSco DS 4.8 1604-1122 56
Struve 1999 DS 7.4 1604-1127 56
SCULPTOR
C72/NGC55 GX 8.0 0015-3908 78
C65/NGC253 GX 7.1 0048-2514 07
C70/NGC300 GX 9.0 0055-3738 09

SCUTUM

M11 OC 5.8 1852-0615 67
M26 OC 8.0 1846-0923 67
NGC6712 GC 8.2 1854-0841 67
SERPENS CAPUT
M5 GC 5.8 1519+0203 55
deltaSer DS 4.2 1535+1032 55
SERPENS CAUDA
M16 CN 6.0 1819-1347 67
IC4756 OC 4.6 1839+0527 65
thetaSer DS 4.5 1856+0412 65
SEXTANS
C53/NGC3115 GX 9.2 1006-0745 37
TAURUS
M1 SN $8.40535+220114$
M45 OC $1.20047+240715$
NGC1514 PN $10.00410+304815$
NGC1647 OC 6.4 OC $0446+190515$
NGC1746 OC $6.00504+235014$
NGC1807 OC $7.00511+163314$
NGC1817 OC $7.70513+164314$
C41/Mel25 OC $1.00427+160015$
chiTau DS $5.50423+253815$
118 Tau DS $5.80529+250914$
TRIANGULUM

M33 GX $5.70134+304102$ iotaTri DS 5.3 0212+3018 02

URSA MAJOR
M40 DS 9.0 1222+5805 32
M81 GX $6.90956+690231$
M82 GX $8.40956+693931$
M97 PN 11.2 1115+548 32
M101 GX 7.7 1403+5419 42
M108 GX $10.11112+553732$
M109 GX 9.8 1158+5320 32
NGC2841 GX 9.3 0923+5056 33
NGC3079 GX 10.6 1003+5539 33
NGC3184 GX 9.8 1019+4123 33
NGC3877 GX 12.0 1147+4727 32
NGC3941 GX $11.01153+365632$
NGC4026 GX 12.0 1200+5055 32
NGC4088 GX 10.5 1206+5030 32
NGC4157 GX 12.0 1212+5026 32
NGC4605 GX 11.0 1240+6134 32
zetaUMa DS 2.3 1324+5456 32
URSA MINOR
alphaUMi DS $2.00232+891601$
VELA
C74/NGC3132 PN 8.2 1008-4026
VIRGO
M49 GX 8.4 1230+0757 C
M58 GX $9.81238+1146$ C
M59 GX $9.81242+1136$ C
M60 GX 8.8 1244+1130 C
M61 GX 9.7 1222+0425 45
M84 GX 9.3 1226+1250 C
M86 GX 9.2 1227+1254 C
M87 GX 8.6 1231+1221 C
M89 GX $9.81236+1230$ C
M90 GX 9.5 1237+1307 C
M104 GX 8.3 1240-1140 47
NGC4216 GX 10.0 1216+1306 C
NGC4388 GX $11.11226+1237$ C
NGC4438 GX 10.1 1228+1258 C
NGC4517 GX 10.5 1233+0004 45
NGC4526 GX 9.6 1234+0739 C
NGC4535 GX 9.8 1235+0809 C
NGC4567/8 GX 11.3 1237+1112 C
C52/NGC4697 GX 9.3 1249-0551 47
NGC4699 GX 9.6 1249-0843 47

NGC4762 GX 10.2 1253+1111 C
NGC5746 GX 10.6 1445+0155 44
gammaVir DS 3.5 1242-0127 45

VULPECULA

M27 PN 8.1 2000+2244 64
NGC6802 OC 8.8 1931+2017 64
NGC6823 CN 7.1 1943+2319 64
C37/NGC6882-5 OC 6.0 2012+2630 64
NGC6940 OC $6.32035+282064$
Cr 399 OC $3.61925+201164$

Observatories: The Thunderdome

'Observatory Dedicated to Boy Scouts of America' (June 1998, BSA)

For the past three years, amateur astronomers Stephen Saber and Gene Evans have been showing the wonders of the night sky to visitors at the Loud Thunder Illowa Scout Camp and Forest Preserve in Illinois City, IL.
June and July alone see more than 2,000 Scouts from across the nation (and overseas) pass through the camp, and each are given the opportunity to view the Moon, planets, and distant galaxies through telescopes and binoculars.
The response was so well received that the HON corporation in Muscatine, Iowa funded the construction of a permanent astronomical observatory at the camp, the first specifically dedicated for use by the Boy Scouts of America.
In keeping with the forest preserve's Native American roots, the observatory was named Akotah Kanikamocik Acahkosak (The Place of Singing Stars).
Operated and maintained by Saber and Evans, the automated dome houses a 14-inch Schmitt-Cassegrain telescope, and is available for all visiting Scout troops and their families.
[Despite my efforts and research to poetically name the observatory, it wasn't too suprising that the visiting Scouts almost immediately dubbed it the 'Thunderdome' (and I, accordingly, became 'Mad Max'). -Saber]

Stellar Reactions: Tales From The Eyepiece

Stephen Saber

Starparties are more than just our chance to combine forces collecting photons, converse with friends, and show-off our new astro toys. Veterans also have the chance to flex their expertise as celestial tour guides for the visiting public.
And after offering thousands of visitors their first up-close glimpses of the heavens, I'd like to share some of my personal favorite laymans' reactions at the eyepiece.

HELIOPHOBIA: It was a beautiful day for Solar observing among the Red Rocks of Arizona. I had a long line forming behind my mounted and filtered 80 mm giant binos. But a middle-aged woman 'on deck' was becoming increasingly reluctant despite the safety reassurances from me and those of her family that had already taken a
peek. Without warning, her panic attack erupted with accompanying hysterical ranting about a possible intimate view of our star 'invading her spirit' and 'stealing her soul'. She ran from the line and spent the next 10 minutes waiting for the rest of her family crouched in fear and peering from behind a nearby building.

HAVE YOU HUGGED AN ASTROLOGER TODAY?: Mighty Jove never fails to make an impression with newbies. After taking a long look with praise and awe at Jupiter, an excited woman began gushing me with thanks and multiple bearhugs. Turns out she was an avid astrologer who had never had the chance to see her favorite planet 'live' among her birthsign's stars. She was so appreciative that I didn't have the heart to explain that Jupiter was nowhere near the constellation she had hoped.

LUNAR VERTIGO: A young lady in line for her first telescopic view of our moon got a bit more than she expected. That night, for kicks, I was employing the porthole effects of a 16 mm Nagler. After about ten mesmerized seconds she managed a quiet and appreciative "Whoa". At almost the same time her knees slowly buckled. She fell onto my accessories table while still clutching the now teetering scope's diagonal. Fortunately my reflexes and moral priorities were on keel that night as I grabbed both the woman's arm and my tripod almost simultaneously, narrowly avoiding certain disaster. (Those Naglers should really come with a physiological warning!)

A SATURNIAN COMA: Saturn looked great that night. I was even envious that this massive group of Cub Scouts was going to enjoy such an incredibly crisp view of our ringed planet at only their first opportunity. In fact, an eager Scout about fifth in line was so literally floored by his view that he fell backwards into the grass and laid quietly mumbling "Oh God, Oh God, Oh God..." while blankly staring at the heavens for at least the next ten minutes. Not only was it amusing, but he made a great shill for those now anxiously waiting in my line.

IT TAKES A STEADY HAND: Back in the day, I used to whip out my red laser pointer at Outreach events to secretly coincide with Mir passes and Iridium flares.
Inevitably, one of the first questions asked was how far the beam would reach, to which I'd respond, "Pretty far. In fact, there are plenty of satellites above us in orbit (casually scanning the skies with the pointer), and sometimes you can catch them (aiming more intently now) at just the right angle and..."
(-7 mag Iridium flare erupts amidst gasps and cheers of amazement).
[Note: Due to recent public GLP misuse and to promote responsible laser use, I no longer perform this 'magic' light show.
But it was quite a crowd pleaser!]
GEE! NO, G.E.!: I overheard the story of
a Boy Scout camp offering the Astronomy merit badge to any hardy souls who could stay up late enough for the entire viewing session. The instructor had trained his scope on a bright planet (presumably Venus) just cresting the ridge across a valley. After the group had a look, he moved on to other objects for a few hours. Toward the end of the session, he returned to the planet they'd viewed earlier. Oddly enough, the luminous object appeared no higher in the sky than it had hours earlier. And on closer inspection, he noticed that it was in fact slightly below the ridge line on the far side of the valley. At that point the instructor realized he'd been training the scope on a street light.
At the end of that week of camp, the staff presented him with a plaque bearing a light bulb to commemorate the discovery of his new planet dubbed 'G.E.' (for General Electric).

WE DON'T NEED NO STEENKING EYEPIECES: Some folks just can't wait to get their first intimate views of the night sky. In a recent story of enthusiasm meeting confusion, I hadn't even mounted my giant binos before an excited elderly gentleman first in line eagerly attempted a peek at the Pleiades thru my tripod boom arm's stock.
He was so thoroughly chastized for this faux pas by his overbearing wife that I sympathetically passed on chiding him with "So, how was the view?"

MOON, SCHMOON: As part of a local elementary school's science fair, I was invited to bring my $8^{\prime \prime}$ SCT to share views of our moon and available planets.
Unfortunately, it decided to rain that evening.
Switching to Plan B, I set-up in the gymnasium and taped a blown-up 18" photo of our gibbous moon (laminated and cut round for just such an occasion) high above the bleachers at the opposite end of the gym. Although the angle of my diagonal merely misled most folks as to location of the substitute-moon, one suspicious 3rd grader wasn't buying any part of this astronomical charade stating, "How can that be the Moon? I was just outside and couldn't see it at all through the clouds!"
He did not, however, seem to have a problem believing my scope was capable of first penetrating the building's ceiling.

FROM THE PUBLIC SOLAR COMPLAINTS DEPT.

"If it's so dangerous to look at the eclipse, then why are they having one at all?"
"Why do we have Daylight Savings Time? That extra hour of sunlight is killing my grass."
"Me and my class cannot make it to the Solar Eclipse on Wednesday.
Can you reschedule it?"
EYE OF THE BEHOLDER: A line of elementary school students, along with some of the faculty, were taking turns at my scope viewing the available sunspots. After taking a peek, one exceptional 2nd grader began calmly explaining this Solar phenomenon to his nearby classmates. He recited perfectly facts concerning umbras and penumbras, surface temperature differences, approximate sizes of sunspots, as well as Sol's diameter and rotational period.
This was in some contrast to the next sunspot observer, the school's principal, who excitedly spun toward me from the eyepiece and simply exclaimed, "Wow! They look like ants!"

VICTORY SPIKE FOR VENUS: I was asked to host a daytime observing session at a nearby youth summer camp. Luckily, conditions were wonderful and the cloudless sky was about as blue as it gets in the Midwest. Hundreds of people had the opportunity to view Sol and Luna.
After lunch, Venus had also climbed high enough in the sky to make it an unscheduled but viable target. Among the first batch of afternoon campers, it was this group's adult counselor that was most excited that another planet might actually be observable during daylight hours. Upon seeing the admittedly pretty but featureless crescent of our sister planet for the first time, she began a touchdown-worthy dance around my scope. The 90 lb . woman's tirade included ecstatic screams and culminated with her falling to her knees and repeatedly pounding tiny fists into the ground.
(And to think I was just gonna stick to sunspots and craters!)
Of course, extreme reactions from views of our celestial treasures are always entertaining. But vicariously seeing the wonders above through a first-timers eyes should also always remind us- lest we take them for granted- of how beautiful, intriguing, and awe-inspiring the Cosmos and its aesthetics truly are.

Stephen Saber has received the Master Observer's award from the Astronomical League and is author of the 'Starhoppers Guide to the Herschel 400'.
He curses the clouds from his home in Rock Island, Illinois.

Herschel II Program Search Sequences

Stephen Saber

Did you know that depriving large-aperture scopes of their full deepsky potential is the \#2 cause of cloudy nights?
Probably not. I just made it up.
Anyway, this should help take most of the gruntwork out of preparing for the Astronomical League's ultimate fuzzy hunt.

Your Lightbucket is still hungry.
Feed it Herschel IIs.

TARGET DISTRIBUTION AND MIDNIGHT CULMINATION DATES FOR THE H II CONSTELLATIONS

CMA (4 targets) JAN 2
GEM (3) JAN 5
MON (13) JAN 5
PUP (5) JAN 8
LYN (4) JAN 19
SEX (1) FEB 22
LMI (4) FEB 23
LEO (20) MAR 1
UMA (39) MAR 11
CRT (9) MAR 12
HYA (13) MAR 15
CRV (2) MAR 28
COM (19) APR 2
CVN (16) APR 7
VIR (62) APR 11
BOO (12) MAY 2
LIB (9) MAY 9
DRA (11) MAY 24
SER (3) JUN 6
HER (7) JUN 13
SGR (4) JUL 7
AQL (3) JUL 16
VUL (2) JUL 25
CYG (11) JUL 30
CAP (1) AUG 8
AQR (6) AUG 25
LAC (1) AUG 28
PEG (13) SEP 1
SCL (2) SEP 26
PSC (15) SEP 27
CEP (7) SEP 29
AND (4) OCT 9
CAS (2) OCT 9
CET (15) OCT 15
TRI (5) OCT 23
ARI (3) OCT 30
PER (13) NOV 7
ERI (17) NOV 10
TAU (3) NOV 30
ORI (8) DEC 11

LEP (3) DEC 14
AUR (3) DEC 21
CAM (3) DEC 23

NGC SEARCH SEQUENCES BY CONSTELLATION

ANDROMEDA

7640206214513
AQUARIUS
718472187171737773927600
AQUILA
681467726804
ARIES
82111561012
AURIGA
188317782192
BOOTES
55205660568755825533552955905899
5523554854905600
CAMELOPARDALIS
225323472366
CANES VENATICI
42484220421743694244413843954914
49565023510354405444544553715383
CANIS MAJOR
2283236723592374
CAPRICORNUS
6907
CASSIOPEIA
7635896
CEPHEUS
7023712971397354741977621184
CETUS
1752171513373576364289911045
103510321073108710901070
COMA BERENICES
42374152421241894298430243124379
43404336457141854169413643104359
505650125053
CORVUS
40244039

CRATER
35133511369337323672363636373892 3887

CYGNUS
68946857688869606992682469916997 703170677082

DRACO
36824133423642504256429143195879 598560156340

ERIDANIS
11871114117211991209116213251332
13531400142115071600161816371700 1779

GEMINI
227423312339

HERCULES
6106618161666058615562396548
HYDRA
26102781285528892784276529863078 31453585410550615078

LACERTA
7245
LEO
31073177316233013274333835963605
35993507368136593067364636893524
3547366637053611
LEO MINOR
3254343034243158
LEPUS
183221392196
LIBRA
58125861587857565728579156055595 5597

LYNX
2415249325002541
MONOCEROS
21702182225222362254226122452259
22692302230923162346
ORION
17621662166319771990202320712112

PEGASUS
71567042717774657463733274577619
762676237742781423

PERSEUS
10581003120711751193116111691348
14911579158216051624

PISCES
7541756277857832125198315410
499514660665706741718

PUPPIS
23962414243224672525

SAGITTARIUS
6507652665966717

SCULPTOR
750724

SERPENS
597060706604

SEXTANS
3156

TAURUS
151417501587

TRIANGULUM
6726048909251060

URSA MAJOR
26392756288028053065351630733225
33593668362236423669368337563319
35834271429046054096414440474100
41574013365240625447546254855443
5585520453085430548154805448

VIRGO
40454073416842674299429443134124 42334224423542414260426442704339
43434608464746394519461245864880
50205129469149044999448749414915
49814928493947425077498449025044
50375018508450685087513454935426
55065507556056385668575057755806
581358315838585058545864

VULPECULA
67936800

Extreme Lunar Crescent Data [L1099-1104]
 Stephen Saber

Young/Old Crescent Spotting Tips

Set up at a site with as much altitude as possible overlooking an unobstructed horizon.
Optimal sky transparency allows the crescent to be detected and tracked down to, or up from, the horizon.
Using a telescope or binoculars (mounted binos are recommended), fine tune the focus on Venus, Jupiter, or one of the brighter stars beforehand.
For dusk attempts, have Sol's setting azimuth on hand- making note after sunset of a random landmark at that position for reference- as well as Luna's altaz position at sunset thru moonset. Accordingly, for dawn attempts, have Luna's altaz info for moonrise thru sunrise.
As dawn slivers have the advantage of possible detection with dark-adapted eyes, wearing sunglasses during the day prior to sunset attempts is recommended for maximum 'dusk' adaptation.
Once the crescent is acquired in binoculars, walk the bino down to the horizon/random landmark in consecutive FOVs for the approximate naked-eye altaz.
A favorable elongation is important. In the 24 hours before or after New Moon, Luna's angular separation from Sol can vary by several degrees. With a favorable ecliptic, net elongations (as altitude) of 6° or more at sunset or moonrise offer the best window for detection. $10-12^{\circ}$ is necessary to catch Saber's beads in optimal/deep twilight. Observers nearer to the equator than the poles enjoy a much greater frequency of steep ecliptics.
Illuminated fractions of same-age crescents within 24 hours of New Moon can vary by over 200% and more than a full magnitude of brightness. Slivers near perigee provide faster elongations and thicker, brighter lunar profiles for personal record crescent spotting.
Last but not least, don't always count-out a shallow ecliptic. Occasionally our moon's extreme northern or southern declination will compensate for a less than favorable ecliptic angle.

Lunation 1099

New Moon 26 October 2011 1957ut

Areas offering net elongations as altitude of 6° or more at sunrise and sunset are indicated in blue/orange above with corresponding crescent data provided below.

Angular Size/Distance
@-30hours $33.6^{\prime} / 355444 \mathrm{~km}$
@ 00hours $33.7^{\prime} / 354967 \mathrm{~km}$
@ + 30 hours $33.0^{\prime} / 361990 \mathrm{~km}$
Declination
(a)-30hours - $10^{\circ} 26^{\prime}$
@ 00 hours $-16^{\circ} 36^{\prime}$
@+30hours - $20^{\circ} 46^{\prime}$
Colongitude
@-30h 253.4°
(a) 00h 268.5
@+30h 283.8°
Illumination/Mag
@-30hours $0.025 \% /-2.72$
@+30hours 0.023\%/-2.38
-30h Waning age/moonrise/az

60n160w -27:29/1628ut/110
20n160w -28:29/1528ut/100
50n120e -22:14/2143ut/108
50n150e -24:21/1936ut/107
30n30e -16:27/0330ut/104
30n60e -18:33/0124ut/104
30n90e -20:38/2319ut/103
30n120e -22:44/2113ut/103
10n00e -14:43/0514ut/103
10n30e -16:48/0309ut/102
10n90e -20:58/2259ut/102
10n120e -23:03/2054ut/101
10s30e-17:07/0250ut/102
10s120e -23:20/2037ut/101
10s150e -25:24/1833ut/100

30s30e-17:28/0229ut/104
30s120e -23:39/2018ut/103
30s150e -25:42/1815ut/102
-30h Waxing age/sunset/altaz
30n120w 29:21/0118ut/7.3,241
30n90w 27:21/2318ut/6.4,241
10n90w 27:42/2339ut/11.1,247
10n60w 25:42/2139ut/10.0,247
10n00e 21:42/1739ut/7.6,248
10n30e 19:42/1539ut/6.6,249
10s60w 26:00/2157ut/12.6,252
10s30e 20:00/1557ut/9.3,252
30s60w 26:22/2219ut/13.5,255
30s30e 20:22/1619ut/10.2,254
30s120e 14:22/1019ut/6.6,253

Lunation 1100

New Moon 25 November 2011 0610ut
Areas offering net elongations as altitude of 6° or more at sunrise and sunset are indicated in blue/orange above with corresponding crescent data provided below.

Angular Size/Distance
@-30hours $33.0^{\prime} / 362684 \mathrm{~km}$
(a) 00hours $32.6^{\prime} / 366609 \mathrm{~km}$
@ + 30hours $32.5^{\prime} / 367810 \mathrm{~km}$

Declination
@ - 30 hours $-19^{\circ} 05^{\prime}$
(a) 00hours - $22^{\circ} 04^{\prime}$
@+30hours - $23^{\circ} 03^{\prime}$
Colongitude
@-30h 251.7°
(a) 00h 266.9°
@+30h 282.3°
Libration (long ${ }^{\circ}$) 90w, 00e, 90e
@-30h -0.2,+1.0,+1.6
(a) $00 \mathrm{~h}+2.9,+3.9,+2.9$
@ $+30 \mathrm{~h}+5.8,+5.1,+3.8$
Illumination/Mag
@-30hours $0.023 \% /-2.72$
@+30hours 0.022\%/-2.38
-30h Waning age/moonrise/az
50n00e -23:44/0626ut/121
50n90e -30:04/0006ut/119
30n120w -16:15/1355ut/113
30n75e-29:53/0017ut/111
10n90w -18:56/1114ut/110
10n75e -30:26/2344ut/108
10s 90 w -19:27/1043ut/110
10s60e -29:51/0019ut/109
30s90w -20:02/1008ut/113
30s45e -29:21/0049ut/111
-30h Waxing age/sunset/altaz
20n160w 21:50/0400ut/8.5,241
30n120w 18:51/0101ut/6.1,239
30n75e 29:51/1201ut/11.0,235
30n135e 25:51/0801ut/9.2,236
10n90w 17:26/2336ut/7.3,245
10n60w 15:26/2136ut/6.2,245
10n75e 30:26/1236ut/14.3,243
10n120e 27:26/0936ut/12.5,243
10s90w 17:57/0007ut/8.2,248
10s30w 13:57/2007ut/6.1,248

10s90e 29:57/1207ut/15.1,249
10s150e 25:57/0807ut/12.6,249
30s90w 18:33/0043ut/7.6,249
30s30w 14:33/2043ut/6.0,248
30s105e 29:33/1143ut/13.3,252
30s150e 26:33/0843ut/12.0,251

Lunation 1101

New Moon 24 December 2011 1808ut

Areas offering net elongations as altitude of 6° or more at sunrise and sunset are indicated in blue/orange above with corresponding crescent data provided below.

Angular Size/Distance
@-30hours $32.6^{\prime} / 366420 \mathrm{~km}$
() 00hours $32.5^{\prime} / 367089 \mathrm{~km}$
@ + 30 hours $31.9^{\prime} / 374858 \mathrm{~km}$
Declination
(a)-30hours - $23^{\circ} 13^{\prime}$
(a) 00hours - $22^{\circ} 39^{\prime}$
@+30hours -19 ${ }^{\circ} 32^{\prime}$
Colongitude
@-30h 250.7°
@ 00h 266.0°
@+30h 281.3°
Libration (long ${ }^{\circ}$) 90w, 00e, 90e
@ $-30 \mathrm{~h}+3.6,+2.4,+1.7$
@ $00 \mathrm{~h}+4.1,+3.1,+4.1$
@ $+30 \mathrm{~h}+4.3,+5.0,+6.2$
Illumination/Mag
@-30hours $0.021 \% /-2.38$
@+30hours $0.020 \% /-2.38$
-30h Waning age/moonrise/az
20n160w -25:57/1611ut/114
50n120w -27:16/1452ut/126
50n90w -29:22/1246ut/126
50n75w -30:24/1144ut/126
30n120w -28:22/1346ut/116
30n90w -30:27/1141ut/116
10n45e -14:56/0312ut/114
10n150e-22:47/1921ut/113

10s45e -15:31/0237ut/111
10s150e -23:22/1846ut/113
30s75e -18:50/2318ut/116
30s150e -24:03/1805ut/116
-30h Waxing age/sunset/altaz
50n105w 28:56/2304ut/9.5,222
50n45e 18:56/1304ut/6.2,226
30n105w 30:00/0008ut/13.4,237
30n120e 14:59/0907ut/6.3,231
10n90w 29:39/2347ut/14.3,290
10n135e 14:39/0847/6.3,247
10s 90 w 30:14/0022ut/13.3,253
10s 120 e 17:14/1022ut/6.1,250
30s75w 29:55/0003ut/9.4,254
30s45e 21:55/1603ut/6.2,251

Lunation 1102

New Moon 23 January 2012 0740ut

Areas offering net elongations as altitude of 6° or more at sunrise and sunset are indicated in blue/orange above with corresponding crescent data provided below.

Angular Size/Distance
@-30hours $31.5^{\prime} / 379849 \mathrm{~km}$
@ 00hours $31.0^{\prime} / 385216 \mathrm{~km}$
@ +30 hours $30.9^{\prime} / 385841 \mathrm{~km}$
Declination
(a)-30hours - $20^{\circ} 15^{\prime}$
@ 00 hours $-16^{\circ} 11^{\prime}$
@ +30 hours $-11^{\circ} 11^{\prime}$
Colongitude
@-30hours 250.3°
@ 00hours 265.5°
@+30hours 280.7°
Libration (long ${ }^{\circ}$) 90w, 00e, 90e
@ $-30 \mathrm{~h}+3.3,+4.7,+4.8$
(a) $00 \mathrm{~h}+5.1,+5.5,+4.2$
@ $+30 \mathrm{~h}+5.8,+4.7,+4.0$
Illumination/Mag
@-30hours $0.019 \% /-2.04$
@+30hours $0.018 \% /-2.04$
-30h Waning age/moonrise/az

50n30e -26:51/0449ut/121
50n45e -27:52/0348ut/121
50n75e-29:55/0145ut/121
30n120w -17:25/1415ut/111
30n60e -29:49/0151ut/113
10n90w -20:21/1139ut/109
10n45e -29:21/0219ut/110
10s90w -20:30/1110ut/109
10s45e -29:51/0149ut/110
30s90w -21:02/1038ut/111
30s30e -29:24/0216ut/113
-30h Waxing age/sunset/altaz
60n160w 18:52/0232ut/7.4,225
20n160w 20:47/0427ut/9.2,253
50n120w 17:00/0040ut/7.4,238
50n60w 13:00/2040ut/6.0,239
50n45e 30:01/1341ut/12.6,234
50n150e 23:00/0640ut/10.1,236
30n120w 17:50/0130ut/8.2,249
30n60w 13:50/2130ut/6.2,250
30n60e 29:50/1330ut/14.1,248
30n150e 23:50/0730ut/11.2,248
10n90w 16:22/0002ut/6.2,255
10n75e 29:22/1302ut/12.6,256
10n150e 24:22/0802ut/10.2,256
10s75e 29:50/1330ut/10.1,261
10s150e 24:50/0830ut/7.6,259

Lunation 1103

New Moon 21 February 2012 2235ut
Areas offering net elongations as altitude of 6° or more at sunrise and sunset are indicated in blue/orange above with corresponding crescent data provided below.

Angular Size/Distance
@-30hours $30.9^{\prime} / 387246 \mathrm{~km}$
(a) 00hours $30.5^{\prime} / 391610 \mathrm{~km}$
@ +30 hours $30.2^{\prime} / 395941 \mathrm{~km}$

Declination
@ - 30 hours - $11^{\circ} 33^{\prime}$
(a 00hours - $05^{\circ} 48^{\prime}$
@ +30 hours $+00^{\circ} 01^{\prime}$
Colongitude
@- 30 hours 250.4°
@ 00hours 265.6°
@ +30 hours 280.7°
Libration (long ${ }^{\circ}$) 90w, 00e, 90e
@ $-30 \mathrm{~h}+4.8,+3.8,+4.6$
(a) $00 \mathrm{~h}+3.6,+4.1,+5.2$
@ $+30 \mathrm{~h}+3.3,+4.5,+4.3$
Illumination/Mag
@-30hours $0.017 \% /-1.70$
@+30hours 0.016\%/-1.70
-30hr waning age/moonrise/az/win
20n160w -30:29/1606ut/102/01:00
50n90e -22:21/0014ut/106/00:46
50n150e -26:25/2010ut/107/00:50
30n00e -16:38/0557ut/100/00:37
30n135e -25:52/2043ut/102/00:52
10n15w -15:52/0643ut/99/00:34
10n120e -25:08/2127ut/101/00:50
10s15e -16:05/0630ut/99/00:32
10s150e -27:28/1907ut/101/00:55
30s15e -18:25/0410ut/101/00:34
30s150e -27:47/1848ut/103/00:55
-30hr waxing age/sunset/altaz/win
60n160w 29:15/0350ut/12.1,246/01:54
20n160w 30:08/0443ut/12.3,265/01:00
50n120w 26:56/0121ut/11.5,253/01:24
50n90e 12:55/1130ut/6.0,256/00:46
30n120w 27:20/0155ut/11.5,262/01:02
30n60e 15:19/1354ut/6.2,262/00:35
10n90w 25:35/0010ut/9.2,267/00:43
10n15e 18:35/1710ut/6.0,266/00:29

Lunation 1104

New Moon 22 March 2012 1436ut

Areas offering net elongations as altitude of 6° or more at sunrise and sunset are indicated in blue/orange above with corresponding crescent data provided below.

Angular Size/Distance
@-30hours $30.1^{\prime} / 397465 \mathrm{~km}$
@ 00hours $29.8^{\prime} / 400793 \mathrm{~km}$
@+30hours 29.6'/403450km
Declination
@ - 30 hours - $00^{\circ} 33^{\prime}$
(a) 00hours $+05^{\circ} 05^{\prime}$
@ +30 hours $+10^{\circ} 17^{\prime}$
Colongitude
@- 30 hours 251.3°
@ 00hours 266.5 ${ }^{\circ}$
@ +3 hours 281.8°
Libration (long ${ }^{\circ}$) 90w, $00 \mathrm{e}, 90 \mathrm{e}$
@ $-30 \mathrm{~h}+5.0,+4.8,+3.6$
(a) $00 \mathrm{~h}+3.9,+2.7,+2.6$
@ $+30 \mathrm{~h}+1.6,+1.1,+2.2$
Illumination/Mag
(a)-30hours $0.016 \% /-1.36$
@+30hours 0.014\%/-1.36
-30hr waning age/moonrise/az/win
20n160w -22:37/1559ut/89/00:43

50n120w -25:23/1313ut/89/00:45
50n60w -28:37/0959ut/99/00:49
30n120w -25:22/1314ut/89/00:47
30n90w -28:24/1112ut/90/00:49

30n105e -16:10/2226ut/87/00:35
30n135e -19:14/1922ut/88/00:39
10n90w -28:24/1112ut/90/00:51
10n60w -30:28/0908ut/90/00:55
10n75e -14:03/0033ut/87/00:29
10n120e -17:08/2128ut/88/00:34
10s75w -28:26/1010ut/90/00:53
10s45w -30:30/0806ut/90/00:57
10s120e -17:05/2131ut/88/00:32
10s150e -19:09/1927ut/88/00:36
30s75w -28:27/1009ut/90/00:55
30s60w -29:29/0907ut/90/00:57

30s150e -19:07/1929ut/88/00:35
50s75w -28:28/1008ut/90/00:55
-30hr waxing age/sunset/altaz/win
60n160w 14:27/0503ut/6.0,273/01:00
50n00e 27:31/1819ut/11.2,271/01:21
50n135e 18:43/0919ut/7.4,273/00:57
30n00e 27:38/1814ut/11.1,274/00:59
30n135e 18:38/0914ut/7.1,275/00:39
10n15w 28:35/1911ut/10.1,278/00:47
10n120e 19:35/1011ut/6.0,277/00:30
10s45w 30:33/2109ut/7.5,282/00:37
10s30e 25:33/1609ut/5.9,281/00:29
raw data generated with WinEphem
check local listings
For more recent maps visit http://lunarcrescentvisibility.blogspot.com/

Lunar Phenomena: Saber's Beads

> You've probably seen a very thin sliver of our moon after sunset or before sunrise. Imagine it thinner. And even thinner. Eventually all that's left is sunlight shining off the mountain peaks while leaving the valleys in darkness. This arched 'string-of-pearls' is known as Saber's beads after a comment I made about the visual similarity to what is seen during a solar eclipse.
> Just before (and after) the moon passes in front of the sun, light shines at us through the valleys but is blocked by the mountains- the mirrored effect of Saber's beads. After reporting this resemblance, my esteemed stargazing colleagues honored me with its namesake.
> While promoted as an outreach term, further scientific study may also provide new insights regarding local albedo values within the lunar libration zones.

EXTREME CRESCENT SPOTTING TIPS

Set up at a site with as much altitude as possible overlooking an unobstructed horizon.
Optimal sky transparency allows the crescent to be detected and tracked down to, or up from, the horizon.
Using a telescope or binoculars (mounted binos are recommended), fine tune the focus on Venus, Jupiter, or one of the brighter stars beforehand.
For dusk attempts, have Sol's setting azimuth on hand- making note after sunset of a random landmark at that position for reference- as well as Luna's altaz position at sunset thru moonset. Accordingly, for dawn attempts, have Luna's altaz info for moonrise thru sunrise.
As dawn slivers have the advantage of possible detection with dark-adapted eyes, wearing sunglasses during the day prior to sunset attempts is recommended for maximum 'dusk' adaptation.

Once the crescent is acquired in binoculars, walk the bino down to the horizon/random landmark in consecutive FOVs for the approximate naked-eye altaz.
A favorable elongation is important. In the 24 hours before or after New Moon, Luna's angular separation from Sol can vary by several degrees. With a favorable ecliptic, net elongations (as altitude) of 6° or more at sunset or moonrise offer the best window for detection. $10-12^{\circ}$ is necessary to catch Saber's beads in optimal/deep twilight. Observers nearer to the equator than the poles enjoy a much greater frequency of steep ecliptics. Illuminated fractions of same-age crescents within 24 hours of New Moon can vary by 200% and a full magnitude of brightness. Slivers near perigee help present a thicker and brighter lunar profile for personal record crescent spotting.
Last but not least, don't always count-out a shallow ecliptic. Occasionally our moon's extreme northern or southern declination will compensate for a less than favorable ecliptic angle.

BRACKETING THE SLIVERS

Another rare and challenging notch for ones lunar bedpost is to catch the consecutive waning and waxing crescents within 24 hours on each side of New Moon.
For example, July 2008's Buck Moon offered such an opportunity as I was able to spot both the -16.5 hour illumination before sunrise on the 2 nd and the +23.5 hour sliver just after sunset on the 3 rd.
Clean horizons for both windows is a gift in itself.

EXTREME CRESCENTS AND COLONGITUDE

A big piece of the puzzle concerning the appearance of a thin crescent's degree of segmentation may be predicted by its colongitude at New Moon which, not suprisingly, can vary by more than 10°, trumping the effects and cycling independently of the apogee-perigee lunar profiles. VMA simulations show New Moon colongs less than 270° to favor segmented waxing crescents while those over 270° favor segmented waning crescents. (Those over 270° would be considered 'early' colongitudinal moons).
Equally important to those hunting Saber's beads, colongitude may also be used inversely to determine the best profiles and visibilities for personal record crescent spotting.
The table below shows the lunation, colongitude at New Moon, duration in hours of the most segmented waxing limb $\left(-280^{\circ}\right.$ colongitude), and the duration in hours of the most segmented waning/preceding limb $\left(+260^{\circ}\right.$ colongitude). Data derived from thin crescent images and my own experiences with extreme crescents also concur with a $260-280^{\circ}$ colong window. Of note; the two youngest naked-eye crescent sighting to date (May 1990/aged 15.5 hrs and Jan 2014/13h25m), my May '06 sighting (20.5 hrs), and the Lodriguss example above (27.5 hrs) all have a colongitude of 276-278 ${ }^{\circ}$.
Thickness and exact formations involved vary at each lunation due to libration and other factors. Illuminations caused by sunlit mountainous regions and/or albedo effects also bear further study.
lun/colong/h-280/h+260
1068274.71028
1069273.01325
1070271.11721
1071269.32018
1072267.62414
1073266.02711
1074264.92909
1075264.72909
1076266.02711
1077268.52216
1078271.31622
1079273.51226
1080274.71028
1081274.90929
1082274.41028
1083273.31226
1084271.51622
1085269.32117
1086267.02513
1087265.32810
1088264.72909
1089265.32809
1090266.92513
1091268.92117
1092271.11721
1093273.11325
1094274.71028

EXTREME CRESCENTS AND LIBRATION

To this we can now take our static moon and add or subtract visible illuminated surface for positive or negative longitudinal libration (libration in latitude mostly affects the clockwise/counter-clockwise orientation).
lun/colong(net)/h-280(net)/h+260(net)
1068 274.7(270.7) 10(19) 28(20)
1069 273.0(270.0) 13(16) 25(16)
Constant moderate negative longitudinal libration for these durations.
The waxing crescent now takes longer to reach the same visible
illumination, while the waning crescent takes longer to reach the arbitrary segmented zone.
A negative libration (west) not only favors thicker extreme waning crescents, but could potentially render otherwise 'easy' first crescents undetectable.

1070 271.1(268.9) 16(16) 21(17)
Zero long-lib takes place near +16 hrs with only a slight impact on the waning crescent.
1071 269.3(270.6) 20(18) 18(18)
Zero long-lib takes place near - 20 hrs with only a slight impact on the waxing crescent.
If this still seems too easy you would be correct, as libration is further dependent on observer location (the above examples use results from 00 n 00 e).
A testament to each lunar aspect being unique, finding exact duplicate libration/colong syncopations are at best wildly algorithmic, and on the verge of serendipitous.

For the record, here's the crescent data from my first observation of Saber's beads:

New Moon 27 May 2006 0526ut
(+24hours)
Angular Size/Distance $31.2^{\prime} / 383356 \mathrm{~km}$
Declination $+27^{\circ} 04^{\prime}$
Colongitude 277.6°
Solar Elongation 13.5°
Illumination/Mag 0.012\%/-1.02
41.5n 90.5w
moonset window: 01h10m
sunset/azimuth: 0126ut/300
altaz at sunset: $\mathbf{1 0 . 3} \mathbf{3}^{\circ} / 298^{\circ}$
moonset/azimuth: 0236ut/308
age at sunset: 20h00m
First detected at +20.2 hours, this instance of Saber's beads peaked in deep twilight with the infant crescent hanging 2.0° above the horizon at a solar elongation of 12.2°.

By this time I was fully immersed in the imagery of a total solar eclipse- as if in the next few moments I would either be basking in our sun's corona or forced to turn away from its glare. Low altitude scintillation added a surreal dynamic to the event.
This experience left me with the mystery of why the phenomenon had escaped my attention in then over 10 years of dedicated young/old crescent spotting, and more so, gone unreported after four centuries of magnified scrutiny. At the same time, this would also mark the relation of stray tip beads within and near libration zones on thicker crescents as potential precursors to the complete effect.
As a drummer and not a scientist, I've done my best to make some headway into the window parameters for viewing this rare and beautiful lunar aspect.

Note the extreme northern declination and sunset altitude combined with a favorable colongitude and ecliptic which allowed one of the longest moonset windows and highest altitudes at sunset possible for a crescent that age. It is this rarity of catching the fully/near-fully segmented limb in a dark sky that defines the complete phenomenon.

Saber's Beads In Non-Astronomy Fiction
[excerpt from Cailyn Vature's 'Raven’ (2010)]
It was cold outside and I could see my breath rising into the air. The stars were out in force shining their bright kaleidoscope; they seemed brighter than usual because the moon was just a sliver crescent in the night sky. I gazed up at them just as I had countless times before.
Many a time I had come out with a blanket just like I had tonight and gazed up at them, and thought `what a lonely world we must be...' but tonight it was different and they shined for me and I sat admiring their beauty. "They really are something aren't they?" I looked to my right and gazed at Jay who was leaning against my rock with me. His eyes dazzled with the sparkles of a million stars behind them making them shimmer in the darkness. My arms were wrapped around him keeping them warm against the cool night air. "I always come out and watch the stars" I answered. "They are something" Jay said giving out a sigh of contentment. "They're so bright tonight" I commented. "You see the moon?" Jay asked "Yeah it's just a tiny crescent" I said "You know what's that's called?" he asked, turning his head to face me and giving a soft smile. "A crescent moon?" I asked "The moon is just moments away from becoming a new moon which it will be for only a few moments until it is a crescent again- that crescent where the moon is nothing but a broken line. Those beads of broken light, they are called Saber's beads." "I didn't know that" I said looking up at the moon. "There is a very old story that talks about the Saber's beads" Jay said giving me a smile, and I nodded for him to continue. "A long time ago man lived peacefully, there was no hate, no lies, and it was a time when everyone was a brother. Then one day a great king from a distant land came and said `I am greatest of thee, all that ye own shall belong to me.' The great king took land, food, and even the lives of his people, and soon death flowed so greatly that heaven itself burst open."
"What happened?" I asked.
"God himself came and struck down the king casting him forever from the land but peace has never returned and heaven will forever be too full. So the legends say on the night of the new moon with the last fading light souls trapped on earth may go to heaven, and souls in heaven wanting to return to earth may come back with the first light after the new moon".
As if God had heard the story I watched with amazement as the light from the moon faded to total darkness and then the first lights from the waxing moon appeared.
"They have returned" Jay said watching the light.
I felt a cold shiver run down my spine as if the story had real meaning and it touched me deep inside.

Saber's Beads In Music
http://www.youtube.com/watch?v=C18Dp7Lw4HA
[Composer/pianist
Sophie Hutchings (2012)]

Binocular Stargazing

Stephen Saber

Stargazing can be enjoyed using any binocular.
It can be enjoyed even more with binoculars when fully dark-adapted and viewing from a moonless site far from any city lights.
The following is a collection of my thoughts on choosing and using binoculars for stargazing, some reviews, and 150 doublestars to enjoy. A wealth of deepsky targets suitable for binos can be found in the Astronomical League Observe Program lists.

First, an important warning:

DO NOT EVER LOOK DIRECTLY AT THE SUN, EITHER WITH
 YOUR UNAIDED EYE OR THROUGH A TELESCOPE OR BINOCULARS, UNTIL YOU ARE THOROUGHLY FAMILIAR WITH THE SAFE METHODS OF OBSERVING THE SUN. DO NOT EVER LEAVE A TELESCOPE OR BINOCULAR UNATTENDED SO THAT A CHILD COULD POINT IT AT THE SUN. PERMANENT EYE DAMAGE OR BLINDNESS COULD RESULT.

Among other factors, choosing binoculars is about trade offs between magnification, aperture, weight, field of view, eye relief, coatings,
and price.
Personal preferences are as individual as our eyesight. Go with the binos that satisfy the most important of your own preferences in these areas.

Choosing a size is literally a matter of desired perspective. Various powers and fields shed new light and aesthetics to our celestial treasures. Different instruments for different moods.
Several years ago I had the opportunity to view the night sky thru 2.5 x opera glasses. IIRC, the FOV was 20$25^{\circ}$. Felt more like bionic-vision than bino-vision. Quite an interesting experience. Saturn and the lunar detail seen at 30 x is always equally as compelling.

10 x 50 s are a recommended first binocular for stargazing. It is the highest magnification that most can hold relatively steady without a tripod while still providing a comfortably large field of view and exit pupil. If buying for a child I would suggest a smaller, lighter 7×35 or 8×40.

I've had a good track record and would recommend ordering from major online dealers such as Orion, Garrett, and Oberwerks, but buying locally or driving to avoid shipping mishaps is always preferable. Good communication and a solid return policy are marks of a reputable online dealer.
Outdoors and hunting supply stores have been known to carry a decent variety of quality instruments. As with scopes, starparties are also a great place to try out and ask about a variety of binoculars. The local astroclub may even have some renters to audition.

SPEAKING OF AUDITIONING BINOCULARS:

SHAKE IT

Make sure nothing is loose or bouncing around inside.

LOOK AT IT

Make sure there are no scratches or cracks on the glass or body.
At arm's length, look for round, unobstructed circles of light thru the barrels and eyepieces.

Quality BAK4 glass is recommended.
Is there a center-focus adjustment?
Are they tripod-adaptable if needed?

MESS WITH IT

Make sure the caps are tight. Make sure the main hinge, focuser, and other adjustments all move smoothly, securely, and with no play.

NOW, LOOK THRU IT

If there's a right diopter dial, close your right eye. Use the center-focus dial for your left eye. Now close your left eye. Use the diopter to focus the right eye.
Can you move the hinge to create a nice, circular image?
Can you see the entire field comfortably?
Does the image bulge-out or bend-in excessively at the edges? A flat, focused image across most of the field is best.
Is there excessive false color in the field of view.
For handheld use, will you be able to hold the image fairly steady for minutes at a time?
Are the barrels properly aligned? Slowly alternate closing and opening each eye. The image should merge smoothly.

ASK ABOUT IT
Make sure there is a satisfactory guarantee and return policy.
Any binocular that passes these tests to your approval should provide an enjoyable ride under the stars.

CONGRATS ON THE NEW GLASS

Okay, Saber. I'm dark-adapted in the middle of a moonless cornfield away from city lights with my new 10×50. Now what?

Fortunately you read this ahead of time and brought a red flashlight, S\&T's Pocket Sky Atlas or a planisphere, Harrington's Touring the Universe through Binoculars or printouts from the AL bino target lists linked above, a blanket or recliner, bug spray or extra clothes, and maybe a sketchpad and pen.
Or forget all that and just randomly cruise the night sky at your leisure.
There is no wrong way to enjoy the stars.
Note: It's always a good idea to bring something else along that's unique to stargazing.
I once had a lengthy encounter (more lengthy than usual anyway) with the Illinois State Police while getting 'back to basics' in the boonies armed with only an 8×40. On this occasion, without even a star atlas or red flashlight to lend credibility, they had a very hard time believing I was simply stargazing. That I look more like a convict than a cosmologist didn't help matters.
But they eventually decided there were no houses close enough for me to be planning any pillaging or plundering, and left me to my claimed business with the stars.
$* * * * *$

BEFORE WE GO ON

Receiving any collimated, mechanically-sound binocular with sufficient eye relief/ipd/diopter adjustment while showing minimal false color and pinpoint stars across 75% of the field rates as a very good purchase.
There's no shame in returning an instrument that doesn't meet these basic requirements.
Even though some companies inspect and pack their products better than others, we always roll the dice when mail ordering precision optics. Fortunately the odds are on our side. Of my $25+$ online bino purchases only 2
have been untweakable returns.
I should also mention that the world of binoculars, in actual use, is far from an exact science. Specification and mechanical variances are common, even among the same models. Bino experiences and assessments also vary with the individual and visual acuity. In short, try not to let the quest for a perfect binocular take precedence over your enjoyment of the night sky.
Keep this in mind as we dig a little deeper.

MAGNIFICATION/SIZE/FIELD

With binoculars, magnification has a much higher performance emphasis than aperture. The preferred AVI (Adler Visibility Index: Mag X Sq. Root of Aperture) yields the following values:
7×3540
8×4050
7×5050
10×5070
10×7085
12×5085
15×70125
15×80135
20×70165
20×80180
25×80225
25×100250
30×80270
30×100300
From this basic list of sizes we see that while a darker sky can easily compensate for $10-20 \mathrm{~mm}$ of aperture, it barely competes with an instrument offering a $5 x$ larger image scale.

More magnification = More stars, less field, less steady for handheld use.
Less magnification $=$ Fewer stars, more field, more steady for handheld use.
Darker sky = Many more stars. This is also important to remember as we cannot take advantage of any binocular's full aperture until our pupils dark adapt and open to at least match the bino's exit pupil (aperture/mag).
$* * * * *$

BANGIN OFF A THE BRICKS

A brick wall can tell us alot about our binoculars.
Preferably mounted and from at least the minimum focus distance, a bino's magnification and degree of major aberrations can all be quickly field tested against this common building pattern.

Magnification

To estimate an instrument's actual magnification, look through the left ocular with your right eye (or vice versa) while keeping both eyes open. The magnified view will be superimposed with the unaided view. Count the number of 1 x bricks that traverse a single magnified brick. $+/-0.5-1.0 \mathrm{x}$ variances are not uncommon.

Spherical: Softness over entire field. None of the image will not come to a crisp focus.
Astigmatism: Horizontal lines will appear in focus and vertical lines out of focus, or vice versa.
Curvature: Periphery of field will appear in focus and center of field out of focus, or vice versa.
Coma: More noticable under the stars, the images show comet-like extensions increasing toward the periphery.
Distortion: Straight lines bend in toward the center of the image (positive/pincushion) or away from the center of the image (negative/barrel).
Note: Minimal positive distortion at the edges is a good thing, and usually intentionally introduced. It helps sharpen up the inner field.

Chromatic: Images are blurred with false color at the fringes. In general, the higher the magnification, the more noticable the chromatic aberration.

Any excessive daytime aberration will also take its toll on the even more stringent proving grounds of the night sky.

Eye relief and comfort at the eyepieces have always been the first dealmaker/breaker considerations with all of my bino purchases.
I've auditioned several binos that, while wonderful in all other aspects, only offer an inaccessible $6-9 \mathrm{mms}$ of ER.
Extraneous eye relief, OTOH, is a comparatively much easier issue to deal with. While eye placement can be more critical, extending the eyeguards or cups is usually all that is required.
Most would agree that extra ER is preferable to not having enough.
Without eyeglasses a minimum useable eye relief (ER minus lens recess) of 10 mm is recommended. Those who wear glasses often require at least 16 mm to take in the entire field. There are a few more caring dealers that go so far as to relate the actual useable eye relief.
Otherwise, the following rules of thumb tend to apply:
No ER spec mentioned: Embarrassingly and/or painfully short.
ER mentioned: Subtract $2-6 \mathrm{~mm}$ for recess.
'Long eye relief' mentioned but not qualified: Roll the dice.
$* * * * *$

Few binoculars are completely unaffected by false color on Luna and the brighter celestial targets. Outside of using expensive apo glass, chromatic aberration in binoculars tends to come with the fast f / r territory. Increased magnification generally amplifies any apparent CA.

Full multi-coatings (FMC) decrease internal reflections and increase night sky contrast. IME, this contrast also increases the appearance of CA on the bright stuff. Standard fully-coated (FC) binos often show less false color at the expense of increased internal reflections.
As there are maybe a handful of celestial sources out of billions that might create offensive CA, most will opt for the reduced reflections and better contrast provided with FMC or MC (multi-coated) models.

While a binocular's exit pupil is not unimportant, it is often overrated. Darker skies, higher magnification, and superior AR coatings can all more than compensate for any loss of image brightness due to a smaller exit pupil. Larger exit pupils often have the advantage of more forgiving eye placement, but sufficient eye relief again
plays an important role in the amount of vignette and attaining optimal eye position.
Smaller ExPs also stop down eye pupil aberrations which commonly increase toward the periphery.
City vs Rural
Binos gulp in lots of skyglow along with the stars from the city which wreaks havoc on our pupils' dilation and dark adaptation. Smaller exit pupils will stop down the magnified peripheral skyglow which at least gives our cones a better signal to noise ratio for detecting detail, but any build up of rhodopsin is still largely inhibited. After scanning the bright city skies most have lowered their binocular to find a naked eye circular field of bleached rhodopsin waiting for them (or in one eye after viewing at the scope). Closing our eyes to get a semblance of decent DA back is futile as any rhodopsin build up will scatter soon after we raise the bino to start another round. That we're not also fighting our own physiology is why dark skies provide us with a dramatic increase in detection above what might be academically expected.

3-5mm exit pupils are fine from any LVM. Try 5 mms and up from very dark sites for better performance. Even if the nok's ExP exceeds our own under rural skies, the unused incoming light is at least not detrimental- and even allows more room to maneuver behind the eyepieces.

One should expect a mechanically sound and collimated mail order binocular whether they've paid 500 dollars or 50 dollars.
Unless you're an accomplished tinkerer, attempting a DIY prism alignment via the tiny adjustment screws also runs the risk of voiding any warranty by accidentally scratching or otherwise damaging the instrument. There's also the possibility that the prisms are fine, but the barrels are poorly aligned.
Mail order and precision optics will never mix, but my advice is to return the binocular when possible and ask for overnight shipping on a properly inspected model.

I'm not a big tripod fan, but it is a necessary evil for getting the steadiest views and detail from any binocular. Mounted binos also allow increased resolution and detection of targets as much as 2 magnitudes fainter than those seen in freehand views.

For handheld use one can create a human tripod by resting both elbows on a support (car, railing, etc.). Some find more braced stability when using heavier instruments. Observing prone or in a recliner is often recommended. Holding big binos closer to the objectives can also provide more comfortable ergonomics.

why binoculars...

It's the grab n' go freedom and wide fields.
It's the increase in depth perception and signal strength (on-axis and peripheral).
It's the effortless navigation, straight thru viewing, and more natural extension of our own eyes.
My first serious glass was a giant binocular.
One would still be hard pressed to find me basking under the stars without 80 mm guns at my side.

what am I getting into with larger/hi-mag binoculars?

You're getting into more weight/tripod use, less steady freehand views, less field, and possibly more obvious CA (amplified by magnification).
Fortunately this all takes a back seat to the increase in resolution, detail, and exponential bombardment of stars.

$10 x$ vs $15 x .$.

For stargazing purposes I'd go so far as to say $15 x 70$ s are becoming the new $10 x 50 \mathrm{~s}$ - especially in light polluted skies. Certainly a popular next step up. 15 x can be a shaky ride, but not beyond some measure of adaptation. The case could be made that 15 s show so much more that we want/need to see it even steadier. Apparent shake at higher mags is also amplified by the smaller fov.
With practice freehanded stability with 15×70 s is not beyond a good deal of improvement, but tripod-mounted (or image stabilized) noks will always offer the best views at any power.

dealing with dew...

Storing binoculars in a secure garage or vehicle has been my best dew prevention. The less change in temperature they have to endure, the better.
Or simply buy more binos. Maybe tool around with a different power/fov while the other bino defrosts.

saturn thru binos...

I've seen the ring gaps thru 10 s and 15 s at favorable inclinations. Not what I'd call a crisp image, though. At 25x I start looking (in vain) for Cassini's. Oohs and ahhs from the public thru 30s, plus Saturn's four brightest moons on a good night.

'ruby' coatings...

Not recommended under the stars and not to be confused with anti-reflective (AR) coatings. This gimmick reduces daytime glare by filtering the red spectrum- which only provides darker, dull images at night.

nokking venus...

Magnifications necessary to show the phases of Venus can change rapidly. While 30x will reveal the phase at most any aspect, the thin but large crescent's orientation near inferior conjunction can be detected naked eye. Glare and bad seeing are minimized by catching our sister planet at its highest elevation in the daytime sky.
why dangle...
WA (wide angle) models are always desirable, provided the extra field is free from excessive aberration and sufficient ER allows access to the full field.

galaxies thru binoculars...

Hunting most galaxies with binos is limited to being an exercise in detection and judge of sky conditions. Yet I still find the repeated mere validation of their continued presence through modest glass to be an amazing aphrodisiac.
At the other size extreme, dark site excursions through the thick arms of our Milky Way and across the Big and Little Magellanics are binocular nirvana.

on zoom binos...

Not recommended for those primarily interested viewing the night sky.
Fixed-power binoculars (up to $\sim 20 \mathrm{x}$) offer up to a 50% wider view than zoom binoculars set to the same magnification.
Decreased optical precision due to the difficulty of keeping the zoom elements of each eyepiece in perfect syncronization, and difficulty to handhold at higher magnification are other disadvantages.
jove thru binos...

I've detected the two main bands at 15 x at larger oppositions.
Much more obvious at 20x.
At 25 x , band asymmetries are often detected.
At 30x I have detected the SEB break occupied by the GRS (no detail).

if vs cf...

Individual focus designs do not use a focuser bridge and are ideally less prone to defocus when we press against them. IFs also provide better waterproofing. A personal preference to stargazers aimed at infinity, but not a popular choice for various and repetitive distance refocusing during daytime use. A majority find center focus/diopter focusing to be adequate and most convenient.

binocular/bv summation...

While no formula can cover the additional physiological gains of using both eyes, an effective aperture increase of 140% is a good place to start (e.g., 70 mm noks rival 100 mm scopes). Binoviewers, for all their wonder, cut the EA in half before a summation formula is applied, resulting in appreciable light loss thru apertures under 8 ".

spec vs effective aperture...

Manufacturers love to skimp on prism size to cut production costs. This generally reduces effective apertures by $5-10 \%$ which also tweaks other specs like mag and fov. Lay your bino flat on a table or mount pointed several inches from a wall. Shine a flashlight thru an eyepiece and measure the projected circle of light to find the noks effective aperture. I've yet to meet an effective aperture that hasn't been 'rounded up' to the advertised diameter.

getting into the (handheld) zone...

The best way to steadily hold your binocular is another subjective preference, and may vary by size, weight, and ergonomics of the instrument. But more important is the time and experimentation one puts into reaching their own acceptable stability. Striving for handheld stability is also excellent precision exercise for the eyes.
Getting in the 'heartbeat-limited' zone takes patience and practice, but many can eventually become capable of useable, detailed stability almost out of the gate.
Darker skies (more stars) are again recommended here for the increased reference points to accelerate coordination.

hi-mags for steadier views...

Freehanding the stars with 20x (or higher) binoculars takes practice and patience to keep the views even marginally worthwhile. In the end, alot depends on how much stability we're willing to sacrifice. The point is that we can and do get better at it as the thousands of coordinating neurons and fast twitch muscles involved adapt.

In addition, the more intense eye/brain/reflex 'training' at higher magnifications can also pay off when gearing down to freehand views at lower power (IS binos excluded).
One of many reinforcing experiences with this happened just a few nights ago. After about an hour of casually picking off Messiers with a 20×80 I went back to my vehicle to warm up and wait for the sky to turn. A Marathon-virgin 11×56 was in arm's reach and I decided to revisit my accumulated treasures with the more modest but eager glass.
Excellent wider field views aside, the relative image steadiness now rated just this side of mounted (caffeine and below zero wind chill notwithstanding). The increased handheld stability was notably more than just that which might be expected. Whether this effect is initially only perceived or enhanced by experience and adapted skill, it seems IME an exercise worthy of merit for increasing stability with more commonly handheld magnifications. (Even 15 x views become easier to steady after roadtripping with $25-30 \mathrm{x}$ noks for awhile.)

A loose analogy to this hi-mag training might be taking practice swings on deck with a ring-weighted baseball bat.
Spend 20 minutes or so with a hi-mag nok in a/your favored braced position on a big, busy target (Luna and Pleiades work well) before dropping down in power. The actual physical/coordinative gains are cumulative, but even the expected stability difference can be enhanced out of the gate.

Another good reason to buy that first hi-mag binocular as well.
as always ymmv

for those unaware...

There's more to binocular alignment than prism
screws. The machining and matching grooves of the barrels must also be precise (and the objective itself for that matter). The angle tolerance of the barrels can be even more strict than those of the prisms.
I cite a recent example of a friend, fed up from tinkering with his bino's prism screws, who gave me his nonrefundable 20×80 stating, "If you can fix em, you can have em".
The dizzying view was indeed so far out of alignment that it soon proved to be beyond the screws' adjustment capabilities.
I had another of my 80 mm noks nearby and swapped barrels with the troublemaker. The image merged perfectly. Only one of the barrels was bad. The donor 80 mm , however, was throwing a fit over its painful, unexpected handicap.
My solution?
Spinning both 70 mm barrels from one of my more expendable 15 x instruments onto the former 20 x troublemaker. Again, the image merged perfectly, and I have a light-weight hybrid 20×70 for my efforts. Of note, the three binos mentioned are all different brands yet compatible at the hip. Also, there are limits to barrel-swapping on a number of fronts
(which I plan on exploring) that in this case were not exceeded.
The moral of the story is simply that binocular misalignment is not always in the prisms. Another good justification for keeping a well-stocked arsenal of binoculars, too.

the c word revisited...

If cranking the prism screws more than half a rotation either way doesn't solve an alignment problem, I'd start looking somewhere else.
Recently I found another related potential culprit in the crossbracing assembly of applicable models (ironically the feature intended to reinforce proper collimation).
A simple thing really. It's the brace's bolt connecting the objectives. If it's loose or not tightened at the barrels' optimal distance the binocular loses collimation.
In my case it was a fairly easy fix. When the bolt is loose/loosened it allows some play between the fat ends. Gently pushing them in or out while viewing will show whether the objectives (hopefully only laterally) need to be locked closer or farther apart. Note: check that the connector at the bar's other end is also secure.
FWIW, this 80 mm nok, purchased from one of the big 3 for $\$ 189$, attained conditional alignment with the barrels locked 30 mm apart. It's a good bet that the bargain priced counterparts are at least as susceptible.

I'm not especially advocating this repair approach.
In fact, I recommend sending such an instrument back and asking for a properly inspected model to be mailed asap with free overnight shipping.
But in this case it was a quick fix, the bino remains aligned, the song remains the same, and we have another fun insight into the wonderful world of miscollimation.

I remember one starparty visitor who brought his own 7×50 binocular which he insisted was easily revealing the four separate main component stars of Orion's Trapezium (a feat requiring the visual acuity of the Bionic Woman).
A suspicion was confirmed as I looked through the horribly misaligned barrels. Everything had separate components.
The kaleidescopic view made me nauseous, but the excited man was perfectly content to continue with his 'bonus' abundance of stars.
true vs apparent fov...

quickie field conversions...
ft/1000yds:
example: $262=5.0^{\circ} \mathrm{TFOV}$
(ft divided by 52.5)
$\mathrm{m} / 1000 \mathrm{~m}$:
example: $88=5.0^{\circ} \mathrm{TFOV}$
(m divided by 17.5)

SELECTED BINOCULAR REVIEWS

Garrett Optical 20×80 UL

The Zach Attack 20×80 UL exudes both quality and elegance. One would also be hard pressed to find better packaging for their mail orders. High marks for smooth, secure mechanics and excellent field sharpness. Unbridled from its pedestal, these 80 mm stallions also make for a sweet ride during casual freehand excursions.
[My fetish for freehanding big glass often gets the better of me. Mounting (or using image-stabilized) binoculars is always recommended for the steadiest image, especially at higher magnifications]

I did find two notable spec discrepancies that may or may not be specimen specific; The listed TFOV (3.2 deg) and ER $(16 \mathrm{~mm})$ respectively measured closer to 3.0 deg and 14 mm .
Neither variances were dealbreakers for me.
Fast shipping and GO's personal service accentuated this satisfying $\$ 179$ transaction.

Dead heat with the GO 20x80UL for performance, mechanics, FOV/ER (both still shy of spec), and coatings. I found this interesting as the two *look* very different. At 15 " $/ 38 \mathrm{~cm}$, the Obie is some 3 " longer with a leaner appearance. The increased length changes the ergonomics noticably but not detrimentally. After adjusting my hand placement along the barrels I find the two equally comfortable for handheld use. Also despite the longer focal length, both binoculars show comparable field sharpness (85-90\%) and daytime/lunar chromatic aberration (not fatal, but present).

Both models are highly recommended.
$* * * * *$

Orion 30×80 MegaView

Out of the box, as expected, the 30 s are physically very similar to Orion's 16×80 with a couple of exceptions. The slightly heavier weight (just under 6 lbs .) is a product of the center rod bracing the bino lengthwise, along with the adjustable captive weight-balancing pedestal that couples directly to a tripod. Another elegant and functional addition are the extendable thick rubber dewshields at the end of each barrel. Even when retracted they make for excellent bumpers to protect the objectives while bringing the total outside barrel diameters to 92 mms . Deploying the dewshields also takes the full height of the formidable and solidly constructed instrument to 14 inches. The trademark leather-textured surface of the main body complements an efficient and attractive all black design.
The supplied hard case is nice, but the MegaView and I would feel more secure with a thick, foam-lined aluminum case to protect its crucial collimation during transport.
While the snug fit of all four eyecaps was a plus, I wouldn't trust the suprisingly thin neckstrap provided with supporting the bino's substantial bulk. (These token neckstraps are thrown in for completeness' sake. Very few people would enjoy being repeatedly jabbed in the chest with that pedestal.)

The fully-multicoated instrument reflects deep blues and greens at the business ends and yields the perfect circles of an unobstructed light path at the lenses. The hinge, center-focus, and diopter all adjusted smoothly, securely, and with no play. I've actually come to expect this from Orion. I now own four of their binos and, if not top-of-the-line optically, their consistant mechanical quality has been very commendable. The good-sized 20 mm eyepiece lenses also sport 14 mms of eye relief. This is close to ideal for me, although probably a bit short for eyeglass wearers to take in the entire field.

I'm a nitpicker for collimation, and 30x binos leave little room for error, especially after a 3-day FedEx journey. So I was immensely relieved to receive these MegaViews in fine alignment. Aberration tests did reveal slight but noticable pincushioning across an otherwise very sharp (to about 80%) field. There was an expected and substantial amount of false color on high-contrast daytime objects and our moon attributed to the high magnification (for 5 bills it'd be nice if they'd spring for some apo lenses), but it was no more offensive than the inherent chromatic aberration found in some comparably fast 80 mm short-tube scopes at lower powers. And for me the CA took a backseat to the increased resolution, wealth of additional stars, and depth of detail seen on Luna under the night sky.

The 50% jump in magnification from 20 to 30x seems even more significant than that noticed between 10 and $15 x$ power binoculars. Catching our moon at the right illumination, Clavius' arched quintet of inner craters are obvious and distinct. Orion's Trapezium splits cleanly and effortlessly into its 4 major components and, while Cassini's seems just out of reach, a well-resolved Saturn presents a crisp disc and ring system. Jupiter's main belts are prominent and on the verge of showing structure. Despite their relatively small 2.7 mm exit pupil and Luna's gibbous interference, the MegaViews still gathered a respectable conglomeration of stars while previewing the Double Cluster, Pleiades, M46/47, the Auriga clusters, and M35. I eagerly anticipate watching them gobble up these treasures and more under a dark sky and plan on letting them run wild thru a moonless Messier Marathon this spring. Upon receiving their Solar filters, I'm also looking forward to my enhanced views of our sun's daily activity.

While the 30×80 s are advertised as having a 2.3 degree field, I could almost- but not quite- squeeze Orion's belt stars within the fieldstop yielding a more accurate and happily accepted 2.5 degree field. This yields an AFOV of 75° and is indeed one of the widest views I've experienced. The porthole effect reminds me of Naglervision (albeit without the superior field edge sharpness).
A tripod is, of course, required for unwavering views with this instrument. Any generic but heavy-duty model should work fine. My ProMaster 6600 bought at a local camera store provides more than sufficient support.

First Impressions verdict: Four out of five stars. While pricey, they are only $\$ 20$ more than the $15 x 80 \mathrm{MVs}$, solidly built, mechanically excellent, and ready to mount without an adapter. The beneficial and protective extendable dewshields are a welcome feature. It loses points for heavy CA on Luna, Jupiter and the brightest stars. But aside from the lack of color correction on those targets, the 30×80 MegaViews give rewarding and impressive binocular views of our moon, brighter planets, and the many Messier-class nightsky treasures.

Glass At A Glance: Pentax 20×60 PCF WPII

\$169 from amazon.com instrument arrived promptly, well-packaged, mechanically sound, and in fine collimation
bak4/fmc/no light path interference
dimensions $9.0 \times 7.75^{\prime \prime}$
weight $45 \mathrm{oz} / 1275 \mathrm{grams}$
ipd $57-72 \mathrm{~mm} /$ lens diameter 18 mm
center focus/clickstop diopter
exit pupil 3.0 mm
eye relief 18 mm useable
min focus 8 m
spiral clickstop eye relief adj
no eyeguards
nitrogen filled/weather resistant
very sturdy construction
sleek black rubber armored housing
tfov $2.4^{\circ}\left(\operatorname{spec} 2.2^{\circ}\right)$
field sharp to $95+\%$ [comparable
to orion 15×63 mini-giants]
minimal positive distortion
afov 44° (spec)
afov 48° (adj) restricted but not necessarily a
dealbreaker. no serious tunnelvision, but more than i'm used to.
false color: present but minimal
ergonomics: easily handheld for casual obs
(tripod is always recommended for steadiest views)
purchase motivations:
compulsive interest
comparison to 20x80s
notes: the obie 20×80 std trumps the pentax
in tfov/afov/depth of field and image brightness.
the pentax 20×60 has the edge in overall field
sharpness and color correction along with being much smaller and lighter. the plentiful ER is overkill to take in the smaller fieldstop perimeter but i doubt any eyeglass wearers would complain.
tip of the day:
WP noks may be WP on the inside, but the outside surfaces are still at the mercy of fog and condensation. storage in a secure garage or vehicle is recommended to keep all optics as close as possible to ambient temps and humidity
bottom line:
five star transaction and instrument highly recommended with caveat of potentially restrictive tfov/afov
as always, ymmv
$* * * * *$

Minolta 8×40 Activa WP

Cruising the net for a quality complementary wide field instrument led me to this $\$ 110$ gem from the Minds of Minolta.
With BAK4 prisms and longer eye relief, the fully multicoated and weatherproof Activa series is an impressive upgrade from their venerable Deluxe (Classic) line of binoculars.

Out of the box, the all black rubber-armored Minolta is a class act, including a very nice soft-lined case and deluxe neckstrap.
Weighing in at a well-balanced 27oz., it first reminded me of a less bulky and more ergonomic version of the Orion UltraView.
The Activa's hinge, focus, and diopter adjustment (which lightly clicks into place at small increments) is smooth and secure. The caps also all fit securely. A single cover takes the place of dual lens caps.
In lieu of roll-back eyeguards, the Activa is equipped with soft rubber twist-lock eyecups to customize eye relief. Rather than spiraling freely, the eyecups again securely click into place over four incremental positions. Very handy.
I'm not a big fan of optics being shipped in a thin layer of styrofoam peanuts, but the Activa and its collimation managed to survive the UPS journey unscathed.
The very bright and vivid daytime, stellar, and Lunar images show negligable false color across nearly the entire 8.2° (spec and measured) field of view. Only the slightest pincushioning was detected over an otherwise very sharp (to 85\%) field.
Noticable prism interference at the exit pupils is limited to a slight diagonal flattening at 1 o'clock (L) and 11 o'clock (R).
While the eye relief is long (spec states 18.5 mm), the moderate lens recess tweaks the usable ER closer to 16 mm . Wearing thin sunglasses I could still comfortably take in the entire field stop with the twist-locks fully retracted.
A generous 22 mm lens diameter, interpupilary range of $58-72 \mathrm{~mm}$, and plenty of room to gaze around the field contributes to the comfortable eygernomics. In addition, I find the 65° apparent FOV very acceptable and immune to any tunnelvision.
Those in the market for a full featured, well-constructed, and sharp looking binocular under $\$ 150$ will not be disappointed.

I spent an enjoyable $21 / 2$ hours breaking in the 8×40 under mag 5 skies, running the latter third of the marathon Messiers and brighter NGCs.
Early impressive observations of note included the Coma cluster, Messiers 3, 5, 13, 12, 10, 4, ic4665, ngc6633, and doublestars alphaLib, epsilonLyr, nuDra, and omicronCyg.
A very pleasing tour through the Summer Triangle was highlighted by Cr399, M27, and hints of the North American and Veil nebulae. A slow, climactic cruise down the Sagittarius Arm's main drag followed through Messiers $11,26,16,17,18,24,23,25,21,20,8,7$, and 6 . All were easily identified, resolved to various degrees, and found flowing over the expanse of about 3 binocular fields.
The Messier cottonball globulars 22, 55, 15, and 2 also stood out beyond simple detection. Uranus and Neptune were also spotted about a degree from, respectively, 4th magnitude suns lambdaAqr and iotaCap. The gas giants soon ushered in our waning crescent moon in close conjunction with Mars.
A handful of satellites and a couple of stray meteors also joined this session's festivities.
After a northeast sweep thru the rising stars of Cassiopeia and a low, early season preview of M31, the Minolta and I called it a night.
Generously rating the transparency $8 / 10$, the Messier globs and OCs were all at least obvious while the dimmer galaxies and nebulae hid behind the early summer haze. As anticipated, the aesthetic context of a $8+^{\circ}$ field and effortless starhopping was a fair compromise for the sacrificed brightness and resolution of my larger instruments.
As a former obsessed fuzzy hunter and long-time big bino enthusiast, this 8 x session made me realize how little time I spend seeing more of the celestial forest through the trees. Always refreshing to throw a different perspective into the mix.
I would also recommend an 8×40 as an excellent first binocular for beginners learning their way around the night sky.

To sum it up: A small price for alot of field and alot of fun.

```
*****
```


Barska X-Trail $\mathbf{3 0 \times 8 0}$

A Big Brown Truck arrived with my new toy earlier this week.
Coddled in bubble-wrap within its hard-case, the 30x Barska survived the trip without a scratch and in fine collimation...

I could stop there as, for $\$ 139$, my expectations had already been met.
But as the audition progressed, I became increasingly pleased with the performance of these bargain Giants.
So here we go.
Vital Stats
Max Dimensions: 13 " x 9 "
Weight: 4.3 lbs .
Min Focus: 49 ft .
All black, streamlined, soft and smooth rubber housing.
Extremely ergonomic and well-balanced.
Aroma: Confidential (Sorry, Kenny.)
Lifetime Limited Warranty
Mechanics: Hinge, focus, and diopter motion secure with no play. Caps all secure. Easy-to-adjust pedestal stays secure along center bar.
BAK4 Prisms (round exit pupils, no light path interference).
Coatings: MC. Despite various specs and speculation, the objectives do indeed present healthy bluish-green reflections thru its black-baffled barrels. Lens and prism paler blue reflections, however, indicate single-
coatings on some surfaces.
Optics (daytime): Very bright images. Moderate pincushioning. Very well color-corrected. Minimal off-focus purple fringing.

Eygernomics
FOV: 2.1° (spec) 2.2° (measured)
AFOV: 63° (per spec) 66° (adj)
F/FSR (Field to Field-Stop Ratio): Average. No tunnelvision, but not a spacewalk either. Field-stop is welldefined.
Eye Relief: 10 mm (spec) 9 mm (useable. recess is slightly less than 2 mm , and I'm feeling generous)
Lens diameter: 20 mm
Exit Pupil: 2.7 mm
IPD: $58-72 \mathrm{~mm}$
Comfort: Very good. Long, soft roll-back rubber eye cups.
Vignette: Minimal. Eye positioning is more forgiving than expected.
My favored useable eye relief is in the $12-14 \mathrm{~mm}$ range, so the Barska is tighter than I prefer (any less would be painfully tight). Not recommended for eyeglass wearers, I would estimate at least a 50% loss of field.

Under The Stars
Pinpoint star images out to 75% of field.
Minimal violet fringing on Jupiter and Vega (substantially less CA than my $\$ 500$ MegaView).
Main Jovian bands are distinct, showing both color and hints of texture.
Negligable false color at Luna's limb; our waning gibbous moon is splendidly detailed.
Versus Orion 30x80MegaView
For another $\$ 350$, the MV provides 4 mm more eye relief and a significantly larger AFOV (fieldstop is nearly peripheral). These are two important qualities for me and worth the extra cost. YMMV.
The MV also provides an additional $.3^{\circ} \mathrm{TFOV}$, and includes extendable dewshields.
Except for the above, the sleek and lightweight Barska 30s not only challenge the heavier MV's optics, mechanics, and quality build, but do so with better color correction (the trade-off, as expected, is increased internal reflections around the bright stuff).

Handheld Use
I spent ten straight minutes standing and another 30 on my back enjoying a relaxed freehand crawl across the available constellations. Very liberating. At just over 4 lbs , they simply do not feel like Giants.

Bino Forum edicts require me to reiterate that a tripod or IS is always recommended for more serious binotarget study.
Following that, the Barska's mounting requirements are minimal; any tripod rated for even 5 lbs will suffice.
Summary
Aside from an incurable giant bino fetish, I also wanted to occasionally share 30x binocular views with the public without putting my more valuable MV in harm's way. The Barska X-Trail 30×80 will serve this purpose with flying colors. More bang for 139 bucks than I expected.
If the MegaView drives like a Cadillac, then the Barska handles more like a sports car.
Recommended with the caveat of potentially restrictive eye relief.

Glass At A Glance: Oberwerk $\mathbf{1 1 \times 5 6}$

\$99 from bigbinoculars.com
instrument arrived promptly, well-packaged, mechanically sound, and in fine collimation
bak4/ fmc/no light path interference
height $7.75 \times 8.0^{\prime \prime} / 19.7 \times 20.3 \mathrm{~cm}$
weight $36 \mathrm{oz} / 965 \mathrm{grams}$
ipd $56-72 \mathrm{~mm} /$ lens diameter 20 mm
center focus/diopter
exit pupil 5.1 mm
eye relief 17 mm useable
min focus $\sim 10 \mathrm{~m}$
soft rollback eyeguards
tfov $6.1^{\circ}(\operatorname{spec} 6.0)$
field sharp to 85%
coma free field 5.5°
nominal positive distortion
afov (spec) 66°
afov (subj) v good. not a spacewalk but no tunnelvision. fieldstop is well-defined false color: present but minimal ergonomics: no complaints; it's 11x at just over two lbs. easily handheld for casual obs. perhaps a bit large for children.
as fortune would have it, the image scale and tfov fall about halfway between my 8 s and 15 s .
purchase motivations:
compulsive interest
additional outreach noks to pass around
it was kevin's turn to get my money
tip of the day:
this bino only rates a soft case. with these cases
i habitually cut and pop enough bubblewrap to surround the bino lengthwise before sliding it in the case for storage and transport (protection and keeps the caps on when taking it out)
bottom line:
five star transaction and instrument
highly recommended
as always, ymmv
$* * * * *$
Barska 15×70 X-Trail: Big Bang For The Buck

I really didn't need another binocular.
I have plenty of binoculars, actually.
Among them is a perfectly wonderful 30×80 Barska X-Trail.
But I was ready to take one for the Forum team after reading a few recent Barska horror stories, and was fully prepared to pull a broken string of parts out of the box when my 15×70 XT arrived.

I found the Barska 15 s on sale at Amazon for $\$ 49$ and haphazardly pulled the trigger. If this negligent, impulsive purchase wouldn't get me a lemon then nothing would. *professional stuntman. do not try this at home*
Three days later a big brown truck delivered another perfectly wonderful specimen.
Well-packaged, collimated, and mechanically sound. Includes soft case, neckstrap, table tripod, adapter, and cleaning cloth.
Looks great next to its 30x big brother, too.
Vital Stats
Max Dimensions: 11"x8.5"
Weight: 2.8 lbs
Min Focus: $\sim 50 \mathrm{ft}$
Design: All black, streamlined, soft and smooth rubber housing.
Ergonomic and well-balanced for its size. No center pedestal. Center focus.
Prisms: BAK4 (round exit pupils, no light path interference).
Coatings: Fully coated/light blue reflections at both ends
Optics (daytime): Very bright images. Very good color-correction across a flat, relatively wide FOV. Minimal pincushioning; it could actually use a little more. There's a subtle center field softness compared to my instruments with higher positive distortion.

Eygernomics (measured)
FOV: 4.4°
AFOV: 66°
F/FSR (Field to Field-Stop Ratio): Very Good. No tunnelvision, but not a spacewalk either. Field-stop is welldefined.
Lens diameter: 20 mm
Exit Pupil: 4.7 mm
IPD: $56-72 \mathrm{~mm}$
Comfort: Very Good. Long, soft roll-back rubber eye cups.
Eye Relief: 18.5 mm (useable).
Vignette: Minimal. However, without eyeglasses the eyeguards must be extended to achieve the proper viewing distance. I always leave the eyeguards extended anyway and take this in stride, but it may be more important to others.

Under The Stars

Pinpoint star images out to 80% of field.
Negligable false color at Luna's limb. Our waning gibbous moon is splendidly detailed and star colors are vivid. The Pleiades, Double Cluster, and Orion Nebula are beautifully framed.

Versus 15×63 Orion MG
I'm not quite comparing apples to apples here.
Both have comparably long eye relief and pleasing eygernomics.
Both also provide comparable brightness; the Barska's extra aperture
helps compensate for the Orion's better coatings/contrast (the XT's exit pupil is also a half-millimeter larger).
The Orion is much lighter, more compact, and has the edge in ergonomics, while the larger and heavier Barska provides an extra $.5^{\circ} \mathrm{FOV}$.
The Orion shows almost no internal reflections (FMC) but an increase in chromatic aberration on Luna and the brightest stars/planets.
These trade-offs all come down to personal preference.
Handheld Use
Weighing-in at less than 3 lbs , I manually swept the night sky standing for a half-hour before even realizing that I'd manually swept the night sky standing for a half-hour. A very liberating and enjoyable ride.

The Barska's mounting requirements are minimal; any tripod rated for even 5 lbs will suffice.
Summary
My best mid-power bino investment for the price.
For those that can handle occasional internal reflections better than false color, I would easily consider the Barska 15×70 XT as one of the best mid-power instruments available under $\$ 100$.
And a steal at $\$ 49$.
Highly recommended with the standing caveat to buy from a reputable dealer that will personally check the mechanics and collimation prior to shipping. Buy and test locally if possible.
[as good of place as any to put this. enjoy.]

Observing Under the Influence: The Apogee 18×50 Beer Bottle Telescope

I got the sweetest lil' early stocking-stuffer for this Christmas.
Apogee's famed, novelty 18×50 BBT.
I'm having a blast with it.
The following may or may not be considered my review.
Vital Stats
Primary Mirror: 50 mm
Magnification: 18x (fixed)
Focal Length, Ratio: $235 \mathrm{~mm}, \mathrm{f} / 4.7$
Max Dimensions: 8.5" x $2.5^{\prime \prime}$
Weight: 10 oz .
Min Focus: 8 ft .
Price: \$21.95
Apogee Transaction Rating: 4/5. Prompt delivery and good communication.
Despite arriving undamaged, the inner packing did not surround the product.
Out-Of-Box: Very nice heavy-nylon black case. Includes shoulder strap and cleaning cloth. The scope is green (I haven't decided which shade yet), more rugged than expected, and, coincidentally, shaped like a beer bottle- including the eyelens cap which pops on and off. A dribble-hole along the main tube doubles as a quarter-inch adaptee for possible tripod mounting.

Coatings: Fully Coated optics (decent blue tint from each end).

Eygernomics: In this specimen, the field of view is a pleasantly-flat, correct-image 3.5°, and coma-free out to 75%. No on-axis astigmatism detected. Negligable false color. Nominal pincushioning. Exit pupil is 2.7 mm . Apparent field is an adequate 63°; Fieldstop is sharp. No tunnelvision, but not a spacewalk either.
But you have to get *to* the FOV first.
I found the 5 mm lens recess to yield a useable eye relief of about 5 mm . In addition, the eyelens diameter is a mere 12 mm . This inconvenience is only offset by the lack of an eyeguard and ability to shove the tapered neck right into your eyeball.

Ergonomics: About what you'd expect. It's about as comfortable as holding an empty beer bottle up to your eye can be. Using both hands and adopting a Master and Commander pose is almost irresistable.

Will I Look Silly Using It: Not if you're alone. At night.
But seriously, most folks would probably just pity what would appear to be a pathetic drinking problem. Add an eyepatch (to view comfortably with both eyes open) and passersby might start charitably tossing coins at you as well.

Will I Feel Silly Using It: There's a good possibility ("But I don't wanna be a pirate..."). Using the BBT is kinda like owning a moped; fun to ride, but you don't want your friends to see you with one.

Mechanics: The secure caps are made of hard plastic. The smooth and secure focusing is attained by rotating the top half of the bottleneck.

That's about it for mechanics.
Nothing rattling around inside.
The velcro on the cool, black case also performs admirably.
Mounted on an EQ2, my only complaint was having to listen as my nearby StarMax was laughing its aperture off.

Storage: In its cool, black case. The mini-scope doesn't match anything in the house. Did I mention the weird shade of green?

Viewing from a dark, transparent sky is, of course, recommended- and does alot to compensate for the lack of aperture and relatively small exit pupil.
The BBT also tests ones true starhopping mettle. At $18 x$, it's a shaky handheld ride until you put in some practice. I happen to love the challenge, and even plan on competing in next spring's Marathon with it. Alone. Stay tuned.

For a $\$ 20$ novelty astro-gift, the Apogee Beer Bottle Telescope actually has alot to offer as a practical stargazing instrument.
I can only hope the already-suspicious Illinois State Police that frequent my favorite rural site show the same appreciation (after I'm forced to take a breathalyzer test).

Happy hunting, and Cheers.

Kronos 26×70: Requiem for Eye Relief

An ongoing quest to discover more relatively lightweight and inexpensive high power binoculars led me to audition the Kronos 26×70. At $\$ 199$, they will not break the bank. At $3.7 \mathrm{lbs}(1.7 \mathrm{~kg})$, they are certainly lightweight.
Unfortunately, insufficient eye relief spoils an otherwise favorable test drive.

All black and all business, the Kronos' leather-textured surface and design is very attractive. The enclosed certificate of authenticity and specs were written in Russian as well as English. Along with the Russian font on the casing, I imagined feeling quite comfortable using these on the deck of the Red October.
I was mildly surprised that the 26×70 only rated a basic nylon case. Included was a somewhat undersized single-stem adapter that could be screwed onto a tripod at one end and clamped around the hinge at the other. But for mounted use I would probably opt for a standard steel L-adapter. On the plus side, all four protective lens caps kept a tight fit despite my semi-violent attempts to shake them loose.
Mechanically, I gave this unit a split-decision. The hinge was quite rigid and reluctant to flex, while the individual focus on both eyepieces was somewhat slippery and unsecure.
The bino's objectives are multicoated, and gazing down the barrels reveal a pinkish-purple tint. Tight circles of an unobstructed light path greeted me at the lenses, but then, any prism interference would be an unforgivable design flaw with the already limited exit pupil.
Perfectly merged terrestrial and stellar images showed the barrels to be in solid alignment. While I could make out the smallest cracks in neighboring chimneys, there was a substantial but not fatal degree of pincushioning. Chromatic aberration was very tolerable, with only minimal green and red boundaries seen around high-contrast objects and the available lunar crescent.
The Kronos' specs cite a 2.5 degree tfov, but I managed to squeeze Orion's belt within the fieldstop, yielding a more accurate 2.7 degrees. Stars remain pinpoints across 85% of the field. Apparent field- by no means narrowis still somewhat optimistic for the adjusted 70 deg quotient. A lack of full multcoatings is evident in the overall brighter background, but with the abundance of additional stars pulled in at $26 x$ this is more easily forgiven. In the minority and/or acclimated from cutting my teeth on 6 lb . Orion Giants, I found the comparably lightweight Kronos' to be an ergonomic handheld ride despite the high magnification (translation: 99\% of the population will need a tripod).
Luna is wonderfully large, sharp, and intricately detailed. Jove reveals two distinct and structured bands, while Saturn shows a tiny but crisp disc and ring system.
I also did not find the relatively small 2.7 mm ExP to be a hinderance. Astronomically, the forte of these noks is not to track down diffuse fuzzies, but rather to enhance resolution and detail on Luna, the planets, clusters, and globs. The Kronos does this well.
Although I don't wear glasses, I still prefer a generous amount of eye relief. Listed at 9 mm , I was more wary of the actual usable ER. It was a bad gamble. First, the lenses are recessed about 2 millimeters. In addition, the stubby eyeguards extend 6 mms and cannot be rolled back. In other words, they were too short to be very useful at blocking peripheral light but long enough to decrease the already short ER. By masochistically wedging the eyepieces into my sockets I could take in the entire field stop. Comfortably and without brushing my eyelashes on the lens I could see maybe a third of the total field. I had thoughts of removing the eyeguards and replacing them with winged models, but ultimately felt the lack of ER would be a constant source of frustration. This was unfortunate as I was otherwise pleased with the Kronos' performance, weight, and price. With even $10-12 \mathrm{mms}$ of eye relief, however, the Russian Giants would've been keepers. But as they say, Вы не можете выиграть все их (you can't win 'em all).
$* * * * *$

Glass At A Glance: Orion Giant View $\mathbf{2 5} \times 100$

\$349 from telescopes.com
instrument arrived promptly, well-packaged, mechanically sound, and in fine collimation aluminum case for transport
bak4/ fmc. orion does not skimp on coatingsthere is barely any reflection at the business ends.
height 17.1 in
weight 10.1 lbs
individual focus/integral mounting post
exit pupil 4 mm
ipd 61-72mm
eye relief 17 luxurious useable mms.
i'm happiest with $12-14 \mathrm{mms}$ of UER plus a few more to take advantage of leaving the eyeguards out to block
peripheral light. the orion does not disappoint.
the large 20 mm eyelens diameters contribute to the excellent viewing experience.
editorial:
i pay to see the field stop, even if the outer fov is just for context. those designing noks with 9 or less mms of ER should be subjected to viewing the fieldstop regardless of ocular bone damage or disfigurement. i keep imagining a think-tank of designers intentionally ignoring every new models' ER specs and, for entertainment purposes, creating a betting pool as to the final distance outcomes ("okay boys! who had 11mms?").
close focus 100 ft
soft rollback eyeguards
tfov 2.5° (spec)
field sharp to 80%
coma free field 2.0°
nominal positive distortion
afov (spec) 63°
afov (subj) v good. not a spacewalk but a substantial view relative to the limited tfov. fieldstop is well-defined false color: present but minimal ergonomics:
braced on my elbows-tripod or reclined, the increased weight actually serves to help stability when held near the objectives.
(a heavy-duty tripod is required for best detection and detail) purchase motivations:
giant bino addicts must have at least one 100 mm horse
in their stable. it's the law.
high mag handheld training, especially as a warm-up
session before powering down to lower mag noks.
after spending 15-20 minutes with the 25×100 -
regardless of the actual physiological stability
increase- views thru my 15 s and 20 s certainly feel
lighter and seem steadier. often reaching
'heartbeat-limited' stability.
bottom line:
10 lbs of heaven
five star transaction and instrument
highly recommended
as always, ymmv

Glass At A Glance: Zhumell $\mathbf{2 0} \times \mathbf{8 0}$
\$99 from binoculars.com
instrument arrived promptly, well-packaged, mechanically sound, and in fine collimation hard liner in leather case
bak $4 / \mathrm{fmc}$ (spec). this specimen is a
tongue-in-cheek fmc; multicoated obj/fully
coated prisms and lens
no light path interference
height 13 " x 9 " $/ 33 \mathrm{cmx} 23 \mathrm{~cm}$
weight $4.4 \mathrm{lbs} / 2.0 \mathrm{~kg}$
ipd $56-72 \mathrm{~mm} /$ lens diameter 20 mm
exit pupil 4.0 mm
eye relief 16 mm useable
min focus $\sim 20 \mathrm{~m}$
center focus/pedestal/center brace
soft rollback eyeguards
tfov $3.2^{\circ}\left(\operatorname{spec} 3.2^{\circ}\right)$
field sharp to 75%
coma free field 2.5°
negligible positive distortion (just this side of neutral)
afov (spec) 64°
afov (subj) no tunnelvision but not as panoramic
as spec might suggest. fieldstop is well-defined
false color: present but minimal
ergonomics: handholdable for casual use and hotdogging at star parties, but tripod is recommended (any standard camera/video tripod will suffice).
purchase motivations:
see what all the fuss is about
second Z20x80 subsequently purchased as
donation to local astroclub's rental program
tip of the day:
along with ideally helping preserve collimation, the
lengthwise bar on crossbraced models can be held as a vertical support for freehand viewing (sliding the pedestal all the way forward). the opposite hand steadies the horizontal and controls focus. the bar also makes a convenient carrying handle for out-of-case transport
bottom line:
five star transaction/four star instrument
recommended bang for the buck purchase
weak afov and outer field sharpness compared to
the obie and garrett counterparts but still qualifies
as an adequate instrument for general stargazing.
as always ymmv
[note: the barska 20x80xt auditioned rates a nearly identical review.
also see 'a tale of four 20s']

Orion 15×63: A Mini-(Giant) Revelation

I'd lugged my $16 x 80$ s around for over 10 years.
Freehand or mounted, I'd never given a second thought to their $5+\mathrm{lb}$. mass. In fact, I'd always related the healthy bulk of these giants as a sign of their powerful optics and construction.
So my first thought upon hefting the mere 41 ounces of the Mini-Giants from their hardcase was, "Are they serious?"
They are.
The relatively light weight is nicely balanced along an $83 / 8^{\prime \prime}$ sleek and streamlined body. (Actually, the MiniGiant series appears to be the revamped FMC big brothers to the popular Orion Scenix line of binoculars.) As advertised, they are easily hand-holdable for several minutes at a time. Although tripod-adaptable, I doubt I would ever have to use them mounted.
Still suspicious, I thought there must be some trade-off (specifically, prism interference) to this contoured design. But there was none. Full circles of light greeted me at the lenses and not a millimeter of obstruction was present while gazing down the black-baffled barrels.
The hinge, focuser, and diopter adjustments all moved smoothly and securely with no play, and, although I'm very sensitive to collimation, I still slowly alternated closing and opening each eye to find the merged image in perfect alignment.
Aberration tests also showed no excessive pincushion or barrel-effect across the 3.9° (measured) field, and color-correction is confined to minimal slivers of green and red on high-contrast daytime objects and Luna. I've never put too much faith in AFOV specs, and the MG is a good example why. A pleasantly wide apparent field belies the modest 58° (adj) quotient. Serious field distortion/coma is limited to the outer 5% of the field, and only really noticable if you go looking for it.
There is no lunar ghosting, and our moon's entire terminator is sharp with detail. The Orion Nebula, Pleiades, and Double Cluster are all amply framed with pinpoint star images. All very impressive.
I just kept waiting for 'the trade off' and, aside from losing 17 mm of aperture and half the weight of my 16 x 80 s , found none.
Also, as advertised, the Mini-Giants have plenty of eye relief (18mm useable). Highly recommended for eyeglass wearers. However, without glasses, the eyeguards must be extended to achieve the proper viewing distance without vignette. I always leave the eyeguards extended anyway, and can live with this, but it may be more important to others.

Again, I'd lugged my 16x80s around for over 10 years.
They've been with me through 30 states, Canada, Mexico, and the Caribbean. They've witnessed many comets, occultations, and eclipses over their lifetime. Mounted, they've impressed hundreds of starparty guests and friends with their size, power, and optics.
They rock.
And I would never let them go.
And they will always remain mounted near my scope for public viewing.
And I'm not just saying this because they're giving me the evil-eye while I'm writing this.
Nevertheless, in summary, I recommend the excellent optics and lightweight ergonomics of the Orion $15 \times 63 \mathrm{~s}$ (at around $\$ 200$) as a competitively-priced alternative to many of the much heavier and tripod-dependent giant binoculars in this magnification range.
$* * * * *$

150 Doublestars For Binoculars Stephen Saber

[sigmaOri courtesy of DSS]

Given a magnified visual acuity of $150^{\prime \prime}$ a 10 x binocular will potentially split doublestars with separations as close as $15^{\prime \prime}$ ($150 / 10$), and 5 " at $30 x$.
Doubles with equal or near equal mags are easier to blackline than those with a significantly brighter glare from the primary. Color interpretations are often subjective for several reasons including sky conditions, color sensitivity, contrast effects, and aperture.
Equally impressive in low power scopefields, this collection of brighter targets for northern observers is arranged by constellation and decreasing separation.
Pocket Sky Atlas chart references are included.
Andromeda psa 2/3
$560156+3715$ 5.7, 6.0@ 190"
$590211+3902$ 6.5, 7.0 @ 16.6"
gamma 0204+4220 2.3, 5.5@9.8"
stf79 0100+4443 6.0, 7.0@ 7.8"

Aquarius psa 76

94 2319-13275.3, 7.3@ 13"
107 2346-1840 5.5, 6.5 @ 6.6"
Aquila psa 65/66/67
15 1905-0402 5.5, 7.2 @ 38"
57 1955-0814 5.8,6.5 @ 36" stf2654 2015-0330 6.0, 7.5 @ 14.2" 5 1847-0057 5.5, 7.5@13"

Aries psa 4

$300237+2439$ 6.6, 7.4@38.6"
lambda 0158+2336 4.9, 7.7 @ 37"
gamma 0154+1918 4.8, 4.8 @ 7.8"

Auriga psa 12

stf698 0525+3451 6.5, 7.5 @ 31.2"
stf764 0541+2929 6.5, 7.0 @ 26"
$140515+3231$ 5.1, 7.4 @ 14.6"
stf8720616+3609 6.9, 7.9 @ 11.3"
$410612+4843$ 5.0, 7.0 @ 7.7"
stf918 0634+52276.5, 7.5 @ 4.7"
Bootes psa 42/44/53
mu 1525+3723 4.3, 6.5 @ 108" s656 1350+21176.8, 7.3@ 86" iota 1416+51224.9,7.5@38" stf1850 1429+2817 6.0, 7.0 @ 25.6"
kappa 1414+5147 4.6, 6.6 @ 13.4"
xi 1451+19064.7, 7.0@6.9" stf1835 1423+08275.1, 7.6 @ 6.2" pi 1441+16254.9, 5.8@5.6"

Camelopardalis psa 11/12/31
11/120506+5858 5.4, 6.5 @ 180" s436 0349+57076.5,7.3@ 58" 32 1249+8325 5.3, 5.8 @ 21.6" $10432+5355$ 5.7, 6.8 @ 10.3"

Cancer psa 24
b5840840+19336.9, 7.2 @ 45"
iota 0847+2846 4.2, 6.6@30" stf1245 0836+0637 6.0, 7.2 @ 10.3" zeta $0812+1739$ 5.6, 6.0 @ 5.9" phi2 0827+2656 6.3, 6.3@ 5.1"

Canes Venatici psa 32
17 1310+38306.0, 6.2 @ 84"
alpha 1256+38192.9, 5.5 @ 19.4"
Canis Major psa 27
h3945 0717-2320 5.0, 5.8 @ 26.8"
Capricornus psa 66
beta1/2 2021-1447 3.4, 6.2 @ 205"
omicron 2030-1834 6.0, 6.5 @ 21.9"

Cassiopeia psa 1

oss26 0220+6002 6.9, 7.4 @ 63"
stf30530003+6605 6.0, 7.7 @ 15.2"
eta 0049+5749 3.4, 7.5 @ 12"

Cepheus psa 71/73

delta $2229+5825$ 3.9, $6.3 @ 41$ "
stf2840 2152+5547 5.5, 7.3 @ 18.3"
beta 2129+7034 3.2, 7.9@13.3"
xi 2204+64384.4, 6.5 @ 7.7"
stf2816 2139+5729 5.6, 7.7, 7.8 @ 11.7", 121"
Cetus psa 6
66 0213-0224 5.7,7.5 @ 16.5"
Coma Berenices psa 45
17 1229+2555 5.3, 6.6@145"
32/33 1252+1704 6.3, 6.7@95"
$241235+1823$ 5.2, 6.7@ 20.3"

Corona Borealis psa 53

zeta $1539+3638$ 5.1, 6.0 @ 6.3"
sigma 1615+3352 5.6, 6.6 @ 6.2"
Corvus psa 47
stf 1669 1241-1300 6.0, 6.1 @ 5.4"
Cygnus psa 62/63
31 2014+4644 3.8, 7.0, 4.8 @ 107", 338"
$161942+50316.0,6.2 @ 40.0^{\prime \prime}$
beta 1931+27583.1, 5.1 @ 34.4"
61 2107+3845 5.2, 6.0@28"
stf2486 1912+4951 6.6, 6.8 @ 7.9"
Delphinus psa 64
s752 2030+1925 6.6, 7.0 @ 106"
gamma 2047+16074.4, 5.0@9.1"
Draco psa 41/52/61
16/17 1636+5255 5.4, 5.5 @ 108"
39 1824+5848 5.0, 7.4 @ 89"
oss 123 1327+6444 6.7, 7.0 @ 69"
nu 1732+55114.9, 4.9 @ 62"
omicron 1851+5923 4.8, 7.8 @ 34.2"
psi 1742+7209 4.9,6.1@30.3"
40/41 1800+8000 5.7,6.1 @ 19.3"
stf2452 1854+7546 6.6, 7.4@5.6"
Equuleus psa 75
epsilon 2059+04186.0, 7.1 @ 11"
Eridanis psa 16/17
55 0444-0848 6.7,6.8@9.2"
32 0354-0257 4.7, 6.2@ 6.8"
Gemini psa 25
$200632+1747$ 6.3, 6.9 @ 20.0"
$380655+13114.7,7.7$ @ 7.1"
Hercules psa 52/54/55/65
37 1641+0413 5.8, 7.0 @ 70"
kappa 1608+1703 5.3, 6.5 @ 28"
$1001808+2606$ 5.9, 6.0 @ 14.2"
$951802+21365.0,5.1$ @ 6.3"
alpha 1715+1423 3.5, 5.4@ 4.7"
rho $1724+3709$ 4.6, 5.6 @ 4.1"

Lacerta psa 72

$82236+3938$ 5.7, $6.522 .4^{\prime \prime}$
Leo psa 34/35
alpha 1008+1158 1.4, 7.7@ 177"
tau 1128+02515.0,7.4@91"
83 1127+03006.2, 7.8@ 28.5"
54 1056+2445 4.5, 6.3@ 6.5"
gamma 1020+1951 2.2, 3.5 @ 4.4"

Lepus psa 16

gamma 0545-2227 3.7, 6.3 @ 96"
h3780 0539-1751 6, 9, 8, 8 @ 89", 76", 129"
s476 0519-1831 6.2, 6.4@ 39"

Libra psa 57

alpha 1451-1602 3.0, 5.0 @ 231"
shj179 1426-1958 6.6, 6.6 @ 16"
stf1962 1539-0847 6.5, 6.6 @ 11.9"
Lynx psa 23
$50627+5825$ 5.3,7.9 @ 96"
$190723+5517$ 5.6, 6.5 @ 14.8"
stf958 0648+5542 6.3, 6.3@4.8"
Lyra psa 63
epsilon1/2 1844+3940 5.0, 5.2 @ 208"
beta 1850+2948 3.5, 7.0 @ 46.6"
oss525 1855+33586.0, 7.7 @ 45"
zeta 1845+37364.3, 5.9@44"
Monoceros psa 25/26/27
zeta 0809-0259 4.3, 7.8 @ 67"
epsilon 0624+0436 4.5, 6.5 @ 27"
beta 0629-0702 4.7, 5.2 @ 7.3"
Ophiuchus psa 54/56
rho 1626-23275, 8, 7 @ 151", 156"
s694 1752+01076.9, 7.1 @ 82"
$531735+0935$ 5.5, 7.5 @ 41.3"
61 1745+0235 6.2, 6.6@ 20.6"
Orion psa 14/16
delta 0532-0018 2.5, 6.5 @ 52.6"
theta2 0535-0525 5.0, 6.5 @ 52"
shj49 0459+1432 6.0, 7.5 @ 39.4"
stf747 0535-0600 4.8, 5.7 @ 35.7"
$230523+0333$ 5.0,7.1 @ 32"
stf855 0609-0230 6.0, 7.0 @ 29.5"
sigma 0539-0236 4.0, 8.8, 6.5, 6.6@ 11", 13", 42"
iota 0536-0555 2.8, 6.9 @ 11.3"
theta1 0535-0523 6.7, 7.9, 5.1, 6.7 @ 8.8", 13.0", 21.5"
lambda $0535+0956$ 3.6, 5.5 @ 4.4"

Pegusus psa 74/75

stf2841 2154+1943 6.4, 7.9 @ 22.3"
stf2978 2308+3249 6.3, 7.5 @ 8.4"
Perseus psa 12/13
$570433+4304$ 6.1, 6.8 @ 116"
stf331 0301+52215.3, 6.7 @ 12.1"

Pisces psa 5

$770106+0455$ 6.8, 7.6 @ 33"
psi1 0106+2128 5.6, 5.8 @ 30"
zeta 0114+0735 5.6, 6.5 @ 23"
$350015+0849$ 6.0, 7.6 @ 11.6"
650050+27436.3,6.3@4.4"
Sagitta psa 64
bu1391913+16516.5, 7.5 @ 113"
theta 2010+2055 6.5, 7.4@ 84"
Scorpius psa 56
nu 1612-1928 4.3, 6.4@ 41"
beta 1605-1948 2.5, 5.0 @ 13.7"
xi 1604-11224.8, 7.3 @ 7.6"
Serpens psa 55/65
stf1919 1513+1918 6.7, 7.6 @ 23.9"
theta 1856+04124.6, 4.9@ 22.1"
Sextans psa 34
$351043+0445$ 6.3, 7.4 @ 6.8"
Taurus psa 14/15
21/22 0346+2432 5.6, 6.4@ 168"
eta 0348+2406 2.9,6.3 @ 117"
hvi98 0416+0611 6.3, 7.0 @ 66"
chi $0423+2538$ 5.5, 7.6 @ 19.4"
stf401 0331+2734 6.4, 6.9 @ 11.3"
$1180529+2509$ 5.8, 6.6 @ 4.8"

Ursa Major psa 31/42/43
stf1831 1416+5643 6.6, 7.1 @ 108"
65 1155+46296.5, 6.7 @ 63"
stf1415 1018+7104 6.7,7.3@16.7"
zeta 1324+5456 2.3, 4.0@ 14.4"
Ursa Minor psa 51
alpha $0231+8915$ 2.0, 9.0 @ 18.4"
pi1 1529+8027 6.6, 7.3@31"
Virgo psa 47
stf1627 1218-0357 6.6, 6.9 @ 20.1"
54 1314-1849 6.5, 7.2 @ 5.3"
Vulpecula psa 75
stf2769 2111+2409 6.5, 7.5 @ 17.9"

Have You Hugged An Astrologer Today?

Stephen Saber
How many are already cringing at the mere mention of the word astrologer?
It's almost a gag reflex for some of us. But then, amateur astronomers are practically bred to criticize all things astrologic, and to discourage others from following that blasphemous starpath.
I've certainly done more than my fair share of astrologybashing (Saber's Fractured Horoscopes is probably still floating around the internet somewhere).
So while it is certainly not my intention to leave readers with a grudging admiration of astrology and its practitioners, I would like to share some accumulated- albeit hard to swallowperspectives regarding them.

Astrologers used to have one of the best gigs in town. Before telescopes came along, they were considered experts in philosophy, theology, and psychology, as well as masters of the stars. But the problem with being held in such high regard was that they eventually became the scapegoats for the kings' and emperors' bad decisions. This usually meant death or exile, causing many to shy away from professional astrology as a career goal. Still, there seemed to be marked personality characteristics common to different individuals whether it had to do with the stars or not. People continued to explore this, although they would never again bet their lives on it.

Meanwhile, in attempts to explain or disprove the correlation between heavenly bodies and Earthly existence, critical stargazers were noticing discrepancies in the movement of Sol and Luna among the other points of light in the sky. Made aware of these compounding eccentricities, even kings realized that the sky's motion was no longer a viable way to plan their day- much less start a war or run an empire.

Galileo may have turned the world on its ear with his Jovian observations, but he also made it chic to discover new facts about the stars and their motions. And although astrologers had already named most of the constellations and bright stars, the newly motivated astronomers continued using the already familiar terms. Ironically, this shared terminology is pretty much the reason many grit their teeth at astrology. And except for the shared terminology modern astrology and astronomy are totally different animals. They just happened to have been born in the same celestial jungle.

Astrology's relation to the physical universe is purely symbolic. Horoscopes and starsigns, for example, don't allow for precession. I used to joke that the Head Astrologers were simply lazy, and content to wait 21,000 years for the silly ecliptic to realign itself. In actuality, they simply don't care. It's not even fundamental to their pursuit. Horoscopes themselves, like fortune cookies, almost always give vague but sensible, positive advice. Accuracy is only rated by how well it helps one get through their life.
Also, there is no bad publicity. Without astrology and daily horoscopes in thousands of newspapers, how much media attention would the constellations and star-stuff get? Not much except for the occasional Pluto Status Update and some new planet pics every couple of years. Maybe we should instead be thanking astrologers for their misguided but prolific advertising. The viral 'revised zodiac signs' prank by astronomers now and then also add some decent outreach mileage.

While I admire the passionate and thorough spanking Phil Platt (of Bad Astronomy) gives astrology, I've nevertheless conceded two practical- if peripheral- benefits of horoscopes; It's often a daily reminder of- and many people's first exposure to- astronomical terms. And the 12 classic zodiac constellations are usually at least listed in proper order. Good reinforcement for learning ones way around the ecliptic.
Realizing or wanting to realize these astronomy-based benefits is another matter.
As a veteran starparty host, I've also found that astrology fans are some of the most appreciative guests at ones scope, assuming they're not scoffed at once they reveal their own stellar connection.
Lastly, any animosity toward astrology, or anything so innocent in life, only takes up that many more brain cells that could be used to enjoy ones own pursuits and passions. Especially the stars.

And if I've offended anyone over the course of this article I apologize. Unfortunately it's in my nature. I am, after all, a Scorpio.

Stephen Saber does not practice astrology, but defends its existence.
He curses the clouds from his home in Rock Island, Illinois.
$* * * * *$

Post Perihelion

Astroforum Candy
Stephen Saber

beyond starhopping: sharpshooting...

Our scopes are shaped like grenade launchers and cannons. Finders give us crosshairs and bull's-eyes. Those of us who still enjoy the theme and thrill of the hunt take pride in possessing a quick and accurate target acquisition. So I view starhopping as an initial reconnoiter, not a continuous requirement.
Sharpshooters practice what has also been referred to as 'spatial acuity'. Basically, this is memorizing simple asterisms formed by nearby visible stars and a finder's red dot (or other) reticle pattern.
Many of us reflexively form invisible asterisms on a regular basis. In light-polluted skies we fill in the dimmer stars of the Little Dipper or Corona Borealis. Sharpshooting is the DSO equivalent.

An excellent exercise is to see the red dot as the target itself. After completing an observation take another look thru the finder with both eyes open and imagine the red dot completing a simple local star pattern (a triangle, an 'L', etc.). Return the scope or binoculars to a neutral start position and aim again to recenter the target solely as the completion of a stellar pattern.
Using ones lowest power/widest field EP is recommended, as this allows a larger margin for error.

It won't happen overnight, and some are tougher than others, but with repetition this logistic reinforcement will allow the observer to eventually memorize hundreds of otherwise invisible DSO positions and skip the celestial pinball routine altogether.
Building this personal go-to database of 'lock and load' targets is both a goal and reward of proficient starhopping.
The 110 Messier objects are popular sharpshooting targets. Becoming intimate with their positions is also essential for those wishing to test their prowess while running the M-Cubed (Messier Marathon from Memory).

on outreach...

When to show certain targets can be just as important as what to view during public sessions.
If the skies are dark enough, deciding to show any galaxies or nebulae should be saved until everyone's had the time to become sufficiently dark adapted. Along that theme, fuzzies are not the best choice immediately after perusing, say, a First Quarter moon.
Also, space your biggest crowd-pleasers wisely. For example, the Pleiades or Double Cluster can be good warm-ups for, say, Venus, but try to save another jaw-dropper (M13, Saturn, Jupiter, etc.) for the end.
Keep the anticipation high by letting your group know about the treasures you will be getting to later. Passing around binoculars to those waiting is also a good idea to keep the crowd interested. Offer to let visitors take cellphone snapshots thru the eyepiece. Astroclub newsletters, IDA pamphlets, old astro mags, and Orion catalogs also make good outreach handouts.
Finally, check ahead of time for any bright satellite passes or Iridium flares that might be available.
A little planning can go a long way.

on S\& T's Pocket Star Atlas...

How good is the PSA?
I have the Corona Borf Collector's edition.
Every time I open it, Izar and a few of Virgo's galaxies wink-out of the sky in compliance.

Truly a powerful atlas.
(the first run printing had 'white holes' masking info on a few
charts, one cutting-off part of CrB's name)
on deep sky objects...
'DSO' can also stand for Dark Sky Objects.
Hunting for galaxies and nebulae without 5th magnitude stars showing can get pretty masochistic.
Seeing the entire Little Dipper asterism (or more) is a popular indicator of galaxy-class skies.
Traveling even 20 minutes farther from city lights, catching your targets as high as possible above the horizon, and a good dose of dark adaptation can also make a big difference in detection/detail.
Aperture rules, but only if dark skies and transparency allow it to.
90 mms from the boonies can easily outperform much larger scopes from suburbia on many DSOs.

the keystone express...

To catch M13 on the rise; Follow a line from Arcturus thru Alphecca to the SW corner of the Keystone (zetaHer).
The Hercules Cluster lies 5° north.
darksky arenas...

I'm going to have some Superdome-sized Bortle Black planetariums built with a projection accuracy to match. Really, really accurate. Open 24/7.
Peaceful outdoors sounds. Always a clear sky waiting. No more frozen fingers. No skeeters. Lunatic Happy Hours. Southern Sky Sundays and Messier Marathon Mondays.
Such an idea might offend alot of hardcore purists. Many might come just for the experience. But I really can't see also faking the observation making any difference to goto users. *sorry. old habits.*
Or maybe night sky colloseums. Huge fields with perimeter walls rising to block local light pollution and outlying city lightdomes.

Would you come?
How far would you drive?
How much rain and cloudcover would it take?
Will preserving an area's dark skies eventually come to this?

soccer field solar system...

One could roughly relate the Solar system's size by comparing Jupiter to a soccer ball placed just shy of a mile away.
Pluto would be a $1 / 8^{\prime \prime}$ pebble at a distance of 6.5 miles.
Earth would be marble about $7 / 8^{\prime \prime}$ inch in diameter at 300 yds.
Sol would be a rather warm sphere 9 feet in diameter held above your head.

bent on the coathanger...

Our ancient friend Al-Sufi notes this stellar collection in 964 B.C. But aside from receiving a moniker from D. F. Brocchi in the 1920s, this 3.5 magnitude gathering somehow manages to avoid being 'officially' catalogued for the better part of three millennia, ending-up as Per Collinder's 399th entry.
We often wonder about the many obvious targets that Chuck Messier skipped. But the cold shoulder shown toward Collinder (Cr) 399 takes the cake.
It practically begs for attention, sitting three and a half degrees northwest of alphaSagitta and covering over a degree of celestial realty within the great Summer Triangle.
Adding to its interest, the jury is still out regarding 399's status as partial open cluster or chance asterism.
But Messier didn't want it. The Herschels didn't want it. Doesn't even rate an entry in the NGC or IC. It doesn't make the RASC's Finest list or the Caldwells.
Almost as an afterthought, this blatant naked-eye staple finally lands a discreet place in the A.L.'s Deep Sky Binocular list. (By unfortunate coincidence- mostly alphabetical- it also ends up the last entry of the Concordiem.)
Even the diminuitive 9th mag open cluster ngc6802 at the Coathanger's eastern edge often gets more publicity.
My point? None really.
Just that any binocular or low-power telescopic view of this Vulpeculan treasure is sure to drive the above irony home.

As a side note, the man who invented the wire coathanger never saw a dime. The company he worked for grabbed the idea and patented it in 1903.

speaking of cr 399...

Two blondes were in a parking lot trying to unlock the door of their Mercedes with a coat hanger. They tried and tried to get the door open but they couldn't. The girl with the coat hanger stopped for a moment to catch her breath and her friend said anxiously, "Hurry up! It's starting to rain and the top's down."
observer levels: how do you define intermediate..?

Has not completed the H400 but consistently spells 'aperture' correctly.

my first first light...

A neighbor's borrowed 70 mm refractor from a nearby graveyard (also my first darksky expedition). Eventually I found Saturn.

It must've been enough.
A week later I owned a 16×80 dino and $8^{\prime \prime}$ SCT loaded for bear.

fair warning...

Without knocking goto (just this once), but as a reality check to beginners interested in this feature with their first telescope, I've included the instruction manual link for the ETX90's optional AutoStar GoTo controller (about as easy as it gets).

There's a little more to it than pushing a 'Jupiter' button and looking in the eyepiece:

http://www.meade.com/manuals/autostar/index.html

astro-anagrams (v2.0)...
First, rearrange the word or phrase to spell our brighter stars' names.
Example: IN LLAMA- ALNILAM
APE CALL-

SOUP CAN- \qquad
ALSO RIP- _ ()
ACTORS- \qquad ()

COY PORN- \qquad ()
A RANCHER-
) \qquad
TAN EARS- (_)

BEE GEE LUST-(_)

A BRAND ALE- \qquad ()
OX PULL- _ ()

LUG USER- \qquad)
A TRIAL- ())
HAT OIL- \qquad (_ -
TRIBAL LEX- _()
ZETA RALPH- \qquad () _--

Solar system object:
DEAR OTIS, I ROASTED, DO EAT SIR, ROAD SITE, DORIS
ATE, RADIO SET, IRATE DOS, DO I STARE- \qquad
Now rearrange the circled letters to reveal the mystery Messier object (Hint: 3 words).

Good luck...

Both have their advantages and should be thought of as complementary instruments for enjoying the stars, i.e. binos and their wide field for the forest perspective, and scopes for their power to peruse the trees.
Every new magnification and FOV has its own resolution and aesthetic reward.

on astro-forums...

with apologies to Cheers
Sometimes you want to go
Where everybody feels your pain
And the rants are all the same
You wanna hunt some DSOs
But the weather's gone down the drain
You wanna go where everybody feels your pain.
online chart errors...
more apologies to Car 54
There's a typo in the Queen
Bootes borders gone awry
There's some nebulae in Cygnus
That belong in Gemini
There's no Sagittarius
Leo's labelled 'Pegasus'
M54, where are you?
Sorry. Bedtime.

telling castor from pollux...

Pollux is the brighter one (lux).
Also sounds like Pollen, and is closer to the Beehive (m44).
less intuitive hints:
Castor is the farther one (49 vs 34 ly).
Castor is the one without a planet.
Castor is the mortal one (twin).
Castor precedes Pollux alphabetically and by right ascension
(by about 10 minutes).
Castor is an A-class star which alphabetically
precedes Pollux's K-class.

outreach or outpreach...

During public starparties or other non-academic events, which approach do you use with guests?
Tour Guide? Expert? Both? Neither?
My goal is to relay accessibility. Modus operandi: If I can do this, anyone can. I'm an enthusiastic novice who just received a binocular/scope and a map of the stars last Xmas. Keep the unfamiliar astro-terminology to a minimum. Just a stargazer that enjoys sharing views of the night sky treasures.

A broader outreach agenda deals with allowing people to enjoy the night sky on their own terms. The next neophyte looking thru my scope may want to become a professional astronomer, or maybe they just like the pretty colors. They might use a different prefered object identifier or constellation pronunciation than me. I'm not there to judge or enforce some personal 'policy' (although this can often require biting ones tongue- a skill
lost on a small but vocal number of amateurs- rather than alienating newcomers). True outreach is given without qualification. My top objective is that they enjoy the show and keep looking up.
The public often has the preconception of astronomy enthusiasts as being condescending, pedantic, and overtly scientific. Try not to give them any reason to confirm it.

the great square of leo...

I really enjoyed Saturn's trip thru the stars of Leo.
On entry in early 2007 our Lion appeared to be fondly batting at the ringed planet like a hanging playtoy.
Along with epsilonLeo, Algeiba, and Regulus, Saturn completed a very colorful Great Square.
It was a leisurely trek to the stars of Virgo, but Saturn won't be visiting Leo again until late in 2035.

once in a black moon...

That's the wiccan term for the 2 nd New Moon in a month anyway.
Works for me.
Other monikers include; Dark Moon, Secret Moon, Finder's Moon, Spinner Moon.

a groovy moon...

I've found images of a Full Moon in Venus' Belt, but not one with Luna directly 'on the border'.
That's what I caught tonight.
A multicolored, oversized beachball 3° above the NE horizon.
Our low-contrast orange, cream, and light-blue moon blended with the sky to the point of appearing to be a mirage.
It only took a few minutes for Sol's increasing glare to extinguish the tie-dyed effect, but it was the most psychedelic 99.9% phase I've seen.
Perfect bead/crescent hunting horizon, too.

back to luna...

I don't like the idea of digging and drilling into our moon. Or eventually having explosives there.
Earth is a very resilient planet.
Luna is a low-density, dusty rock.
Ever accidentally tap something solid at just the
right point that it splits instead?

our temporal-mental moon...

That ashen light takes an extra bounce to reach us.
So we're also viewing two separate temporal light reflections from Luna.
Sadly, we can only enjoy Earthshine as it appeared 2.6 seconds ago.
During Earthshine, shouldn't there be an area of illumination where a transiting object of specific size, velocity, and distance (and/or its shadow) would appear to skip (or lag) across our moon?

Now that would be a wild observation.
The time-delayed terminator also translates
to a constant observed surface phase delay.
I got about 15 feet $/ 5$ meters at the equator.
Maybe 70% of that at mid-lats.
Anyone else feel ripped-off?

sliver spotting tips...

Set up at a site with as much altitude as possible overlooking an unobstructed horizon.
Optimal sky transparency allows the crescent to be detected and tracked down to, or up from, the horizon. Using a telescope or binoculars (mounted binos are recommended), fine tune the focus on Venus, Jupiter, or one of the brighter stars beforehand.
For dusk attempts, have Sol's setting azimuth on hand- making note after sunset of a random landmark at that position for reference- as well as Luna's altaz position at sunset thru moonset. Accordingly, for dawn attempts, have Luna's altaz info for moonrise thru sunrise.
As dawn slivers have the advantage of possible detection with dark-adapted eyes, wearing sunglasses during the day prior to sunset attempts is recommended for maximum 'dusk' adaptation.
Once the crescent is acquired in binoculars, walk the bino down to the horizon/random landmark in consecutive FOVs for the approximate naked-eye altaz.
A favorable elongation (aka 'moonlag') is important. In the 24 hours before or after New Moon, Luna's angular separation from Sol can vary by several degrees. With a favorable ecliptic, net elongations (as altitude) of 5° or more at sunset or moonrise offer the best window for detection. $8-10^{\circ}$ is necessary to catch Saber's Beads in optimal/deep twilight.
Slivers near perigee help present a thicker and brighter lunar profile for personal record crescent spotting. Illuminated fractions of same-age crescents within 24 hours of New Moon can vary by 200% and a full magnitude of brightness.
Last but not least, don't always count-out a shallow ecliptic. Occasionally our moon's extreme northern or southern declination will compensate for a less than favorable ecliptic angle.

the other moon illusion...

The shadowplay along our moon's surface often coaxes our depth perception to transform sloping craters into bulging domes (aka the convex/concave con).
Some people think they're hallucinating.
Others never see it.
I practice inverting them at will.
A related Solar illusion known as the Wilson effect gives a depth perspective to sunspots as they approach the limb.

memoirs of a giant bino junkie...

Just kidding. But I should write a book about it someday.
My first serious glass was a 16×80 binocular.
I keep several Armoralled and on display.
I'm still compelled to audition any Giants with my preferred specs.
saber's reform of met-error-ology...

1. Scrolling tickers reading 'For Entertainment Purposes Only' required during forecasts.
2. Local LVMs, Transparency, and Seeing conditions will be diligently measured and reported.
3. The phrase 'Fair Skies' will be replaced with 'Roll the Dice'.
4. Meteorologists will be paid on commission alone.
5. Forecasts beyond 2 days will now be limited to two words: 'Mostly Seasonal'.

Leery as well. Bullwinkle only has 6 rounded tines. For a hundred bucks, I'd be content if it arrived collimated and without any mechanical defects. Btw, Tycho Brahe had a pet moose that once got drunk and fell down the stairs in his castle. Seriously.

outreach: adopt-a-star...

I used to buy novelty stars like candy as 'dozen-roses-alternative' gifts. (This was before any contributionworthy Adopt-A-Star programs
existed).
The International Star Registry even offered me their Cluster Club Visa.
One night, I decided to go out and hunt one of those stars down.
I haven't went a day without Looking Up since.
Adopting these stellar gifts could even be considered a form of Outreach.
All it took was one obscure sun in Perseus (besides running into the Alpha Persei and Double Clusters along the way) to trigger my obsession.

Btw, I'm still stuck with a star in Ursa Minor's bowl from a breakup before the certificate arrived.
A shame, being as it's in such prime celestial real estate.
Years later, I'm still looking for another qualifying recipient hottie with the initials TLS.
Until then, the 11th magnitude sun just goes by 'Tough Luck, Saber'.
For a small fee, adopting a star thru a local astronomy club not only benefits a good cause, but just might help spark a lifetime of fascination with the night sky.
('TLS' aka 10.8 mag TYC4417-00335-1 can be visited at radec 1506+7420)

a mane attraction...

There's a beautiful parade of 7th and 8th magnitude stars winding south and east from etaTau in the Pleiades. I imagine this stellar chain as Ally's Braid (the flowing locks of Lady Alcyone).

little joe (from kokomo)...

This colorful 'four the hard way' naked eye asterism lies just southeast of the pisces circlet at nearly the zero radec nexus ($27,29,30$, and 33 psc ; psa 07). Also my nod to the nasa rocket series of the same nick, the quartet makes an equally convincing piece of 'chicklet' gum. The ecliptic runs directly between little joe and the circlet.

dreamcatcher...

A wreath of 5th-7th mag stars loosely surround gammaCygnus (Sadr). Nebulosity in darker skies thickens the 2° ring and enhances the void between. Best in 15-20x binos. (2023+4017 psa 62)

the planetarium tour story...

Okay, picture an insolent and gung-ho (not mellow like now) neo-amateur Saber on a 30-person tour of a certain large and famous planetarium. The condescending tour guide is a 3rd grade science teacher on summer break.
During the Solar system slide show an unmistakable photo of our moon is shown. The guide non-rhetorically asks, "Who knows what this is?".
A man sitting a few chairs away from me happily states, "It's the Moon!"- and gets chastized by the pedantic guide; "No. It's just A moon. There are x-number of moons in the Solar system! Ours is called Luna!". It was very rude, and the admonished man looked like he was going to cry.

A few more slides and scoldings go by.
The crowd is not having a good time.
Then an unmistakable slide of a very close star appears.
The guide begins his rote commentary; "Here's the Sun showing quite a few sunspo...".
I'd had about enough of this joker.
"What?!", I scoffed loudly. "The Sun?! There are billions of suns up there! Ours is called Sol!".
He was speechless as the entire audience and onlooking staff began laughing and applauding.
The deflated guide finally managed to utter the word, "Touche" ".
His commentaries remained carefully generic and pleasant for the rest of the tour.
[note: planetarium mentioned is not the Adler. Chicago's Adler planetarium is the Disneyland of stargazing and you should go this weekend if possible.]
you must become one with the ecliptic, grasshopper...
Ecliptic Grasshopper.
Sounds like a mixed drink.

Ever want to memorize the Great Lakes?
Just imagine beautiful homes along the shoreline:
Huron
Ontario
Michigan
Erie
Superior
How about one for the number of chapters in the Old and New Testaments?
Old: 39
New: 3×9 (27)
Here's an easy mnemonic for the classic zodiac constellation order.
It might save your life someday (or at least come in handy in the field).
Cats Are Pets, And The Good Cats Live Very Long Some Say
[Capricornus, Aquarius, Pisces, Aries, Taurus, Gemini, Cancer, Leo, Virgo, Libra, Scorpius, Sagittarius.]
The word order can also be transposed and tweaked to start at (the first point of) Aries.
most impressive observations...
\#5 First Luna/Saturn Occultation
\#4 First Experience with the Southern Skies (LMC, SMC, Eta Carinae, et al).
\#3 First Experience with real (Arizona's 7+ mag) skies. Quite an eye-opener for those from the mediocre, lightpolluted Midwest.
\#2 Feb. '98 Total Eclipse (Aruba). Jupiter and Mercury poised as vanguards on either side of Totality.
\#1 The Millenium-class Finger of God: Hyakutake
Honorable Mention:
Venus transits Sol ('04 and '12)
Revisiting everything thru my first set of Naglers
on first trips to dark skies...

Darksky fever can be just as addicting as aperture fever.
First it's a 20 minute drive, then an hour. Next thing you know, you're in the mountains of Colorado and Wyoming.
Unfortunately, it just makes coming back home that much harder.
After my first trip to Arizona, I was kicking and screaming as they dragged me back into the 727.

doublevision...

The appeal of doublestars? If you have to ask you'll never understand.
It's about uncovering a star's secrets; companions, colors, and personality.
Personally, I prefer the opticals as they are unique to our perspective from Earth. Binaries, OTOH, can't help but be doubles.

Illusion or not, one of the liberties of Double Star observing is that there are no 'wrong' apparent color interpretations.
I'm also not a fan of knowing the PAs ahead of time.
Kind of a plot spoiler, and can lead to false positive IDs.
Estimating mag/sep between oncoming headlights and noting the color variation in rows of traffic lights are common signs of DS addiction.

sharpshooting m81...

4.6 mag 24UMa is my $\mathrm{m} 81 / 82$ guidestar, just 2° west of the pair. Chances of nokking these fuzzies literally do not bode well unless this sun is visible naked eye.
The two galaxies also make a large but nearly equilateral triangle with alpha and upsilonUMa.
The Phecda/Dubhe route works best if the line continues over the top (just north) of Dubhe.
on opposition...
Definition \#2: Approaching an unsympathetic spouse about any astro-purchase.
on stress-free stargazing...
I stopped watching/reading the weather forecasts years ago. My horoscopes have a better track record. I just look out a window. If it's clear, I'm there. Out of state excursions have an exactly 51% chance of decent skies. DSO junkies are well advised to come to terms with Lady Luna. You don't have to embrace her- just tolerate her. Remember- stress is bad for your eyes.
Also, reminding myself that starry nights are a privilege, not a right.

sol is not a four-letter word...

Since the discovery of other suns and moons those terms have become common nouns, so I've always been more comfortable with the clarity of referring to our sun and moon by the proper names Sol and Luna. Besides, it's the Solar system and Lunar eclipse, not Sunar and Moonar. With most every feature named from their greek/arabic roots, why balk at the main indentifiers? Also, as one fellow observer noted, "Sol and Luna also sound more scientific". Following this, there are no other Solar systems. It is the celestial neighborhood unique to our star. Solar-type or Sol-type systems has a better semantic ring to me for similar suns with orbiting planets. 'Sun-like stars' always sounds redundant and silly to me as well. Kinda like Canine-like dogs. On the even lighter side, the term 'The Sun' might not come across as very PC in the future...

Imagine one of the neighboring gangs of ETs get lost and land on Earth to get directions. The Head Alien gestures at Sol and asks the name of the star in our system. Joe Astronomer puffs-up his chest and replies, "That is The Sun!", to which the Aliens all fall on the ground laughing, "The Sun?! Sun, Schmun! You call that a sun? Our sun could engulf this and two other star
systems and then go home and chop firewood. Pathetic earthlings. Because of your arrogance we will assimilate you first!" I'd hate to think that after all this time preparing for contact with other life forms that we would be assimilated on the grounds of mere semantics.

nice night for an eclipse...

Cold but nice, anyway.
I volunteered the services of my 102 Mak and 20×80 to assist the local college planetarium's lunar eclipse presentation.
Some 200 hearty souls braved single digit temps and a soft but biting breeze for the event. Interestingly, my GLP seemed to generate as much excitement as our rare celestial alignment.

After the crowd thinned out I plugged my binoviewer into the zerbatory's formidable C14 for one of my most satisfying views of Saturn to date.
I hadn't been jawdrop wowed at a scope for awhile- and it felt good.
After clearing our shadow Luna even managed a beautiful 22° halo as an encore.
Recharged and rejuvenated,
Saber
The Deere planetarium at Augustana College (Rock Island, IL):
helios.augustana.edu/astronomy/
public forgiveness...
"I was born in February, so I'm an Aquarium." -Kelly Bundy
So I'm hanging-out with a girl I recently met and her birth date came up.
I correctly guessed 'Gemini' (having memorized the precession-impaired astrological zodiac) and, ever the romantic, asked if she'd ever seen 'her' constellation.
I got a blank smile.
Me: "You know. The stars of Gemini...In the sky?"
Her: Blank (but pretty) smile. Then, "I just know I'm a Gemini."
I'll be saving this particular Outreach venture until I get a free decade.
In fact, after a string of unsupportive card-carrying GASH* members, indifference is a gift.

*Girlfriends Against Stellar Happenings

How bout the 'Public Full Moon'?
How much leeway do you allow them to call it 'Full'?
I don't start biting my tongue unless they're a good day and a half off either way.
Otherwise I just nod and let them enjoy it without comment.
But it takes a conscious effort.
check out the caption:
http://www.shutterstock.com/pic-2100483.html
perseverance:
http://www.shutterstock.com/pic-2100477.html
fortunately he's got another gig to fall back on:
http://www.shutterstock.com/pic-2119725.html
success!...doh. cept' for the dustcap:
http://www.shutterstock.com/pic-2100476.html

conjunction junction...

(10dec2006 0530-0700cst)
Telescopically teased and taunted early by our moon- sliding a mere 34 ' north of Saturn.
After appreciating the close reunion of Mercury, Jupiter, and Mars thru binos, the trio all eventually squeezed their way into my Mak's 1.3° field of view. The severe low-altitude turbulence only allowed the three spheres to dance in rainbows of scintillation. BetaSco also joined the conjunction from a distance of over 500 light-years. The near-occultation and rare planetary gathering made for a very memorable double-feature. I'd also like to thank Ma Nature for looking the other way this weekend.
Great celestial fix.

sgh400: the case of the missing green triangles...

Reasons the targets themselves are not denoted on the charts:
To avoid clutter.
They're unnecessary (the project can be completed with the guide in stand-alone mode).
Only the visible stars are intended to be shown.
I was also not aware of how dependent some observers are on those symbols, but will try to fit them in for the epoch 2050.0 edition.
Thank you for your patience.
update: due to impractical printing/mailing costs, the sgh400 is no longer in publication. i recommend its polished successor, the herschel 400 observing guide from cambridge university publishing.

olive, the other nebula...

Found a DSS suprise while browsing M35's neighborhood.
I've seen my share of plate noise, but this guy was pretty impressive.
Its cause is either the dec entry error or I've unlocked a dimensional
phase-shifted deep sky code.
Definitely some symmetrical phillips-head mottling.
Olive's plate noise catalogue parameters are
ra 060620.0 dec 2410000 plate $60^{\prime} \times 60^{\prime}$
P0SS2/UKSTU Red, HST Phase 2 (GSC2)
tinyurl.com/8nolxk
happy holidays!

a foxy hat trick...

Vulpecula's Coathanger completes a nice 8 deg equilateral triangle with Albireo and the Dumbell Nebula. Great trio of targets for public star parties.
got rhodopsin...?
After being under beautiful dark skies for a few hours, one might take a break from the eyepiece and notice that the sky and especially the surroundings look brighter. The LVM hasn't dropped, but the black just isn't so black anymore.
Even those $7+$ mag skies that begin as *pitch-black* lose their aesthetic contrast after hours of dark adaptation. But our eyes are only doing what they're supposed to. The rods are in overdrive and the cones are doing their best to catch up.

The ability to read and walk safely by the Milky Way's skyglow alone is a common sign of 'hyper-adaptation'. Personally, I miss the contrast.
Not to the point where I'd intentionally ruin my galaxy eyes with an artificial light source...
but I miss it.
ecliptic delinquency...
In addition to the 12 zodiacal constellations, Luna and the visible planets can also appear within the borders of Auriga, Ophiuchus, Cetus, Orion, Corvus, Sextans, Canis Minor, Pegasus, Crater, Scutum, Hydra, and Serpens. (Pluto can cover the real estate of an additional 17 constellations.)

beads and smoke rings...

Along the centerline of an eclipse, the 'beads' aspect of our sun and moon's limb being so properly aligned can be so short-lived as to escape notice. The full necklace of Saber's beads could be thought of as this moment frozen in time (and enjoyable with much less risk to our eyesight).
But while viewing these older waxing and waning phases, zero in on those stray limb beads at high power and slowly defocus them. The diffraction rings from the sunlit peaks against the terminator intertwine with the smoke colored links- transforming Saber's beads into Saber's chain.
In heavy turbulence the chain takes on a multicolored neon appearance.
Like Mardi Gras- the more beads, the better.

inside saber's beads...

It is both a lunar aspect phenomenon and informal term for the detached points of illumination at the tips of thicker crescents. Those within and near libration zones would also all be considered potential precursors to the complete effect, so I only claim to have inherited and upgraded the status of those stray tip beads.
It started out as a fun outreach term and an offering to pay it forward to an obsession that has given me so much.
When I'm not immersed in observational astronomy I destroy drumkits. Personally, this made the bestowed term especially apt as the tips of drumsticks are also known as 'beads'.

While I made no attempt to share or spread the term online until both Astronomy magazine and the Astronomical League had endorsed it for promotion and study, the term at its inception nevertheless drew a small cry from vandals and trolls. As usual, this came from those least qualified to offer an opinion. But I quite enjoyed and welcomed the controversy. In fact, one could not have paid for such effective publicity. All photo examples were used with permission and those strictly not for profit.

By 2010 the term had taken on a viral life of its own, appearing in literary fiction and crossword puzzles, and was found related to crafts, decorations, and even the transcendental (representing open-mindedness and increased perspective i.e., experiencing a Saber's beads moment). Australian composer/pianist Sophie Hutchings released the track 'Saber's Beads' on her 2012 album and at YouTube. This was all also welcomed and I'm pleased that the phenomenon's interest was not limited to the world of astronomy.

and at 2 days it's called diana's thong...

To the Romans she was Diana, the Goddess of the Moon and of the Hunt, but has many names in many cultures worldwide. By whatever name (Isis, Ishtar, Artemis, Bridget, Ngami), she hunted with a silver bow and shot arrows of moonlight. Luna's 3-day-old crescent is said to be shaped like her Bow.

It's also a wiccan reference. Diana's Bow is important to witches for its magical forces.
At the opposite phase (3 days before New) Luna forms a ' C ' and is sometimes referred to as Hecate's Sickle (Hecate is another possibly not-so-pleasant moon goddess). The sickle is an ancient image which relates to harvesting and death.

Nothing morbid intended- just googled this stuff up.

virtual observing: sitting in plato...

Wanna hear something scary?
I think I've spent more than enough time watching Earth from our moon using Celestia. Now when I've got Plato in my sights the view back at us is conjured nearly simultaneously.

observing clubs we'd really like to see...

THE CRYOGENIC DEEP-SKY CLUB
Participants must observe any 100 NGC objects during the months of December and January in temperatures not exceeding -5 F (wind chill optional). At least 25 of these observations must
be made with no sensation or feeling in your fingers or face.
Projects also include making snowangels with your Dob and sketching a friend's tongue frozen to your optical tube. In case of lethal frostbite, pin a
note to your chest instructing paramedics not to revive you with paddles; remembering that electronic aid is not allowed.

THE ANT-BURNERS CLUB

Amaze neighborhood children with the true destructive powers of your scope. Requirements include partially, annularly, and totally frying 50 insects with your finder scope. At least 10 of these should be from the arachnid order. Sketches should be made in gory detail and include smoke plumes. Note the elapsed time, aroma, and Solar angle of all annihilations.

THE AMAZING STORIES CLUB

The list of audacious visual claims is endless. To qualify for this certificate you must visit a minimum of ten starparties and collect the top 3 Amazing Stories from each. Note the date, time,
sky conditions, and expressions of disbelief from those listening.
Don't leave the party without interjecting your own fantasy observations, each time adding a couple tenths of magnitude to your LVMs.

THE GO-TO CLUB

No observations required. Participants need only mail the purchase receipt of their Go-To scope or accessory to the program coordinator to receive this certificate. Congratulations! You can now proudly show everyone that you have no idea how to aim a scope. Projects for those wishing to receive the additional commemorative pin include breathing, shooting fish in a barrel, and walking on the Earth's surface.

THE IDA VIGILANTE CLUB

Using rocks, slingshots, or automatic weapons, amateurs are encouraged to extinguish a minimum of 25 pesky streetlights in their neighborhood. With each conquest, make sure to note the location, time, weapon of choice, and police activity in your area.
A commemorative pin is also available for those eliminating 100 or more stray light sources or an entire WalMart parking lot.
If arrested, hold strong to your belief that you were only acting in self-defense against the harmful, misdirected photons.

wtf was that...

I caught my first fluke Iridium in the summer of '97 (shortly after their original launches).
I spent days pondering what that bizarre -5 mag brightening that blazed thru the Little Dipper's bowl was before finally hearing of their existence and apparition potential.
The explosion's sketch is still penciled in on Map 2 of my old SA2000.
fess up, iridium junkies...
How many have actually traveled to a flare center?
I've gone after brighter than -7 s that were en route to my darksky sites and planned local outreach events around some impressive flares just to wow the public. Good stuff.

those extra galilean moons...

Io, Europa, Ganymede, and Callisto are all brighter than 6th magnitude and easy detections in most any binocular. (Often, one or more will be passing in front of or behind Jupiter's disc.) In fact, each moon would readily be visible from a dark sky without any magnification if not for the tremendous glare of the gas giant. Every so often a brighter field star or two will attempt to sneak into the Galilean plane, but Jove soon gets annoyed and kicks these occasional stellar imposters out of the litter. During the last days of June 2008 this ' 5 th moon' is played by a 5.6 mag background star in Sagittarius. Also known as HR 7327, the class A5/FK bluewhite sun resides at a distance of just over 191 lightyears.
So while we're admiring our neighbor Jupiter during this close conjunction, it may be interesting to note that; Charles Messier was 85 years old, the bicycle was invented, and Mississippi was admitted to the union as the 20th state when that light from distant HR 7327 began its journey toward us.

or, those extra galilean moons...

Occasionally a fieldstar or two can be seen posing as Galilean moons. Jupiter even occults a few of these stars. Ideally each Galilean would also get a shot at blocking these suns, and the entire system pass would take place at a favorable elongation from Sol.
Cruising around with my astro software found such an event scheduled around Jove's occultation of 7.9 mag SAO 187846 coming up on July 12. During the main system pass each of the big moons threaten the fieldstar, the closest conjunction made by Callisto as a finale. The star also closely rides Callisto's orbital rail for the duration.
The dynamics of the pass will be especially compelling; Io and Europa appear to chase the scurrying sun right into the hands of Ganymede and Callisto before it narrowly escapes to points east.
(Sorry. I've been in cyberspace all night.)
Anyway, this all starts on July 11th 2008 in north-central Sagittarius just SE of the Teaspoon asterism (psa 67). The unsuspecting star can be found at radec 1914-2234.

resolving the galilean moons...

Ganymede's diameter can swell to over $1.8^{\prime \prime}$, which puts its disc resolution in the $60-70 \mathrm{~mm}$ range. Near opposition the discs of Io and Europa are good tests for $90-100 \mathrm{~mm}$ scopes.

messier's sweet sixteen...

Here's an easy galaxy-hop thru sixteen of Messier's finest non-comets in the Virgo/Coma cluster. Choose an eyepiece that provides as close as possible to a 1° field. The trail begins at our Lion's tail.
[SA2000 14, PSA 45]
From Denebola (betaLeo), go 0.3° (fields) N and $6.8^{\circ} \mathrm{E}$ to star 6 Com .
From 6Com go $0.5^{\circ} \mathrm{W}$ to M98.
From M98 go $0.5^{\circ} \mathrm{S}$ and $1.2^{\circ} \mathrm{E}$ to M99.
From M99 go $1.0^{\circ} \mathrm{E}$ and $1.4^{\circ} \mathrm{N}$ to M100.
From M100 go $0.6^{\circ} \mathrm{E}$ and $2.4^{\circ} \mathrm{N}$ to M85.
From M85 go $5.3^{\circ} \mathrm{S}$ to M84.
From M84 look $0.1^{\circ} \mathrm{N}$ and $0.3^{\circ} \mathrm{E}$ for M86.

From M86 go $0.6^{\circ} \mathrm{S}$ and $1.1^{\circ} \mathrm{E}$ to M87.
From M87 go $0.2^{\circ} \mathrm{E}$ and $2.0^{\circ} \mathrm{N}$ to M88.
From M88 go $0.1^{\circ} \mathrm{N}$ and $0.8^{\circ} \mathrm{E}$ to M91.
From M91 go $0.4^{\circ} \mathrm{E}$ and $1.3^{\circ} \mathrm{S}$ to M90.
From M90 go $0.3^{\circ} \mathrm{W}$ and $0.7^{\circ} \mathrm{S}$ to M89.
From M89 go $0.5^{\circ} \mathrm{E}$ and $0.8^{\circ} \mathrm{S}$ to M58.
From M58 go $0.2^{\circ} \mathrm{S}$ and $1.1^{\circ} \mathrm{E}$ to M59
From M59 look $0.1^{\circ} \mathrm{S}$ and $0.4^{\circ} \mathrm{E}$ for M60.
From M60 go $3.4^{\circ} \mathrm{W}$ and $3.5^{\circ} \mathrm{S}$ to M49.
From M49 go $2.0^{\circ} \mathrm{W}$ and $3.5^{\circ} \mathrm{S}$ to M61.
Don't forget to reward yourself with M104, 3.6° south of 4.8 mag chiVir.
drive to succeed...
'DSO' can also stand for Dark Sky Objects.
Hunting for galaxies and nebulae without 5th magnitude stars showing can get pretty masochistic.
Seeing the entire Little Dipper asterism (or more) is a popular indicator of galaxy-class skies.
Traveling even 20 minutes farther from city lights, catching your targets as high as possible above the horizon, and a good dose of dark adaptation can also make the difference between detection and detail.
You know you're under truly dark and transparent skies when even the Little Dipper's background actually looks like it's part of the Milky Way.
Which it is.

breadcrumbs to m101...

In moderately light polluted skies, crosschecking m101 as the top vertex of a slightly flattened triangle with Mizar and Alkaid, four 4th and 5th mag suns east of Mizar can be used as a trail of breadcrumbs to this often shy fuzzy. 101 is only another degree and a half northeast of the 4th crumb, 86 uma.

be prepared...

Consumed with hunting Herschels several Januarys ago, I didn't even realize it was $-16^{\circ} \mathrm{F}$ until I heard it on the radio driving home.

But the coldest I ever felt while observing actually happened one August.
Laramie, WY was enjoying a warm 85 degree summer day.
That night however, I froze my aperture off at $14,000 \mathrm{ft}$ in the neighboring Medicine Bow mountains, nearly paralyzed by temps dipping only into the mid-20s.
Flatlander lesson quickly learned;
Dress for temps 30 deg colder when going out observing.
Prepare for temps 60 deg colder when going $u p$ observing.
Plenty of fuel in in the furnace is also an essential for cold weather observing.
Load up on pizza, tacos, monster burgers with 4-digit calorie counts, etc. For sessions over an hour I also bring Snickers Marathon Bars and hot chocolate (Mountain Dew in the summer).
I've even kept my warm vehicle idling nearby- but not too close, allowing myself 10-15 minutes per hour to defrost (cover or disconnect the dome light beforehand).

As engrossed in observing as we become, make sure to get up and stretch or take a short walk at least every hour. Keeping the blood and oxygen pumping also increases eye/brain performance at the eyepiece.
and it transits with spica...

I've had some great views of Omega Centauri from points south, but from home it barely claws itself more than a degree above my hopeless horizon.
Still, every spring I find myself driven to scan the deck below iotaCen in hopes of sighting OC's telltale glow.
Honorific starhopping?
Good practice, anyway.

'knowing' the constellations...

In the end, one only needs to know the constellations well enough to enjoy them.
But if there were an absolute (short of biblical) to knowing the constellations it would certainly include recognition and logistics beyond our '2-D' skydome stuck at lau from Sol. That is, to be able to navigate the bright stars and swing through the radec monkeybars from all points of (starting small) the Milky Way as our familiar asterisms distort and nge targets are regularly found grazing in alien constellations. (Unfortunately, our primitive early-21st century planetaria only allows simple and approximate virtual touring.)
In this sense, even the most symbiotic Earthbound knowledge of the stars and constellations is just the first word in a very thick celestial novel.

h400/h2 phantoms...

Yes, both lists contain a small number of apparently non-existent and/or questionable targets. These are not 'mistakes' but rather intentionally included to 1) drive us to temporary insanity, and 2) experience Herschel's observation (He claimed to see something here. What will we see?).
Loathe to ruin the adventure for anyone, I'll pass on listing the specific suspects.

the daytime planet hunting story...

Sometimes you get the gas giant, and sometimes the gas giant gets you.
One afternoon several years ago, my mounted 16×80 and I pegged Jupiter under a very blue sky. I only had the altaz position to go by, but the ghostly gas giant popped into the field on my first swing. I knew this was a giftand my dumb luck was about to run out.
The next afternoon I was ready to show off my daytime hunting skills at the EISP. Jupiter had other plans. I spent twenty minutes searching and begging for that pale ghost to reappear. I was convinced that Jove had taken the day off to visit another star system.
Incredulous and with eyeballs bleeding, I got some food and went for a short walk around the park.
Fifteen minutes later I walked back over to my bino to find that Jupiter had already posed itself dead-center in the field. A 3.5 degree field. It was bizarre.
It somehow even appeared to be laughing at me.

on minor planets...

Hunting and tracking asteroids does have its own appeal.
There are many available on any given night, over a hundred are detectable with moderate aperture, they holdup well against light pollution, and their rapid movement can often even be noticed over the course of an hour. Occasional stellar grazes and occultations are pretty interesting as well.
Good stuff for those 'what else could I look for' nights, too.
sol at 650au...
...still shines at the magnitude of a full moon (-12.7) with an apparent diameter
of $3^{\prime \prime}$. its light would also always be 3.8 light-days old.
the encircling oval represents neptune's orbit.
http://tinyurl.com/2v6g4e2

jove at lunar distance...

celestia gives an 18° angular sky displacement at 384400 km .
At this distance io can swing within 32000 km of earth and cover 6° of sky.
http://tinyurl.com/2ftooyc

hail to the king...

a pair of double sat/shadow transits mark the 401st anniversary of galileo's first jovian observations (jan2011):
http://tinyurl.com/dst-jan10
http://tinyurl.com/dst-jan17
attack formation: bravo...
maximum orbital tilts of the Jovian moons occur every 6 years (2006, 2012, 2018, etc.) as they cross their minimum tilts over the same period ($2009,2015,2021$).
http://tinyurl.com/33zsajg (jun2006)
a galilean double-double...
http://tinyurl.com/2ce5sth (oct2008)
titan clips saturn's shadow...
http://tinyurl.com/2dydpqr (jan2009)
titan's shadow transits ringspan...
http://tinyurl.com/24fgess (aug2008)
saturn jan-sep2009...
from saturn's gap overlooking the rings earth makes a final dive south of the ring plane before the northern crossing.
http://tinyurl.com/24u8jeu
saturn: the motion picture...
double-pump: saturn ring plane crossing and aspect (jan2009- sep2010)
http://tinyurl.com/2emr5x5
lunar eclipse dec 2010...
virtual views from gioja:
screenshot: http://tinyurl.com/ssx-tle2010sw
avi. clips: http://tinyurl.com/ssx-2010eclipse
the force is with them...
After exhaustive research, scientists have now determined why the southern skies are so abundantly gifted:

dark sky wow factor scale...

Follows the Bortle sky rating (1-8) while concurrently and subjectively escalating the thrill, detail, and enjoyment like magnitudes; each rating providing 2.5 x more wow.
As indicated, even a 20 minute drive from the city to a green zone yields nearly 40 times more wow to your obs session. Trust me.
bortle/more wow
white/x 1.0
red / x 2.5
orange/x 6.3
yellow/x 15.8
green/ x 39.8
blue / x 100.0
gray-black/ x 251.1
Don't be in too much of a hurry to experience those Bortle 8 skies.
Observationally speaking, once you've had Black (or Gray), you can never go back.
celestial navigation blues...
Until it becomes innate by repetition (anymore it takes a conscious effort for me not to see the labeled radec grid superimposed on the sky), use a star atlas to find the coordinates' constellation and a planisphere to determine that constellation's visibility. Right ascension and declination are the sky's longitude and latitude, so think of the constellations as countries and stars as cities.
Another option is to pass on the right ascension/declination coordinates in favor of a target's altaz position (altitude: horizon $=0$ deg, zenith $=90$ deg. azimuth: compass point along the horizon;
north $=0 \mathrm{deg}$, east $=90 \mathrm{deg}$, south $=180 \mathrm{deg}$, west $=270 \mathrm{deg}$).
Astro software programs often provide this info automatically.
Basic altaz (altitude/azimuth) navigation: Everyone is equipped with close to a 10 degree fist at arm's length. 4 fists stacked vertically from the horizon gets us close to 40 deg altitude. Facing north, 5 horizontal fists to the right along the horizon takes us to 50 deg azimuth (northeast). Stick out your thumb for another 5 deg.

there's something about mira...

Cetus would arguably make a better mermaid than monster.
After all, the jewel-like Mira (omicron Ceti) seems more appropriately adorned by a beautiful sea nymph than forever found lodged in a whale's gullet.
The added mythological spice of the catfights with Cassiopeia alone would've been worth it.
The 10th magnitude variable, occasionally reaching 2 nd- 3 rd mag at maxima, was even described as reaching a brightness "almost equal to Aldeberan" (0.85 mag) by J. Herschel in November 1779.

Mira maximas through 2015:
2010: Oct 21-31
2011: Sep 21-30
2012: Aug 21-31
2013: Jul 21-31
2014: Jun 21-31
2015: May 21-31
more marathon...
Naked-eye, bino, scope, sketching, and imaging marathons have all been attempted. Traditional marathon or a goto Messier 'Tour', there is no wrong way to enjoy the event. I've also participated in Mess-Cal marathons, incorporating the Caldwells throughout the night (bagging as many as latitude allows). Alternating methods also allows the observer to become more intimate with the various target perspectives and appearances.
Those preparing for their maiden Marathon should get a good visual and starhopping fix on Messiers 74, 77, 33, 32,110 , as well as Ms 72, 73, and 30 after sunset in December/January while the targets still enjoy the luxury of a dark sky. You'll be glad you did.
Enjoy a February Marathon if weather permits.
The evening rush Messiers are cake, and totals over 100 are still easily attainable (40 N).
It's hardly a requirement, though.
One can always wait and roll the meteorological dice in March.
And I've never cared for the initial handicap of April Marathons
(but don't let this stop you). As always, ymmv.

the m74 sprint...

While attempting early-March Marathons I've often made a mini-challenge of how many Ms can be bagged before m 74 reaches threshold detection.
It's good dark adaption warm-up, plus most can be revisited later
for a closer look.

in too deep when...

You secretly plan your honeymoon around the next total solar eclipse
Large collections of books, CDs, DVDs, etc. are arranged by Bortle-class
color
You've hired a private plane to get above the clouds to witness a partial or total lunar eclipse
You can point to the current altaz of Luna, the planets, and the Messiers without going outside
You've used SkyAtlas2000 charts to wallpaper at least one full room of your house
stranded- which instrument?...
Actually, this is probably my 10th forum desert island stranding. Big binoculars are fine.
Just need to change travel agencies.
(still a few dozen to go...you thought i was going to give the answers to the anagrams didn't you?)
Also see Saber Does The Stars (Vol 2/The Index Catalogue): http://caldwellcatalogue.blogspot.com/

Memorizing the Maria: Jack and the Mutant Beaver
 Stephen Saber

Jack and Jill went up to our moon to fetch a pail of water.
(After breaking his crown and her tumbling after they both got really weird.)
Jill set off to search the far side, while Jack was to take the pail and scout the near side.
Quite suddenly, Jack ran into Luna's only other inhabitant, the Mutant Beaver.
Formerly representing the constellation Beavius (now occupied by the Pleiades), the Mutant Beaver had been forever banished to our moon by Cepheus for gnawing on Perseus' ankle during his fight with Cetus to save the lovely Andromeda.

Finally having someone to talk to, the Mutant Beaver refuses to let Jack pass until he's heard every silly astronomy joke he's been making up during his exile.
Jack, to this day, endures the Mutant Beaver's ramblings.
Jill was last reported near the crater H.G. Wells.
Stephen Saber is an Astronomical League Master Observer and author of the 'Starhoppers Guide to the Herschel 400'.
He curses the clouds from his home in Rock Island, Illinois.
Watch for the children's book Saber's Fractured Astro Mythology coming soon.

Asterisms: Ally's Braid
 Stephen Saber

This beautiful parade of 7th and 8th magnitude stars wind south and east from etaTau in the Pleiades. I imagine this stellar chain as the flowing locks of Lady Alcyone.

Best enjoyed thru binoculars and low-power scopefields, the asterism is centered at radec $0348+2345$. (Also see the SAC database at http://www.saguaroastro.org).
[image courtesy of DSS]

A Matter Of Time
 Stephen Saber

For some reason I can visualize a 45 light-minute trip to Jupiter better than the equivalent 5.4 Astronomical Units ($810,000,000 \mathrm{~km} / 502,200,000$ miles) involved.
It's also an interesting temporal perspective to pass along to the public. When asked "How far is it to Saturn?" at Outreach events, the segue "It's about an hour and a half away" always piques more than sufficient curiosity. Following are some of the lightspeed distances from Earth to our neighbors during 2008. (Pluto started the year some 10 light-minutes farther than Neptune and put another 1.4 minutes between them by December.)

The Parallax Project

(or How I Got An 'F' In Astronomy Class)

by Stephen Saber
Sometime between Shoemaker-Levy and the Millenium-class Hyakutake, a retired grade school science teacher had volunteered to be a guest speaker at one of our astroclub's monthly meetings. For the presentation, we would participate in one of her favorite annual astronomy class projects. Her pupils, we were told, had loved and cherished this exercise for over forty years.

We were each given a piece of paper, pencil, scotch tape, 7 plastic beads, Elmer's glue, a ruler, scissors, and maybe five feet of string.
Unconnected dots representing the Big Dipper asterism suns and their distances from us in lightyears were the only things shown on the paper.
After connecting the dots we were instructed to cut pieces of string at lengths relative to the star distanceslonger lengths to represent more LYs. A bead would be glued to one end of each string, and the other end taped to the corresponding dot. The dangling beads would then be held overhead and observed from different angles to demonstrate parallax.

Looking around and seeing this large group of adults wielding little glue bottles and undersized scissors was pretty entertaining in itself, but something was nagging at me as I studiously began measuring out my strings. Held overhead, it would be the closer stars that should be represented by longer strings.
I supposed, as we were her first classroom of amateur astronomers, that this crucial flaw in her prized project had never been addressed.
But it didn't seem to be bothering any of my classmates either- several more occupied with untangling sticky tethered beads from gooey fingers- so I could've just played along.
Instead, my hand went up as our teacher neared to check everyone's progress.
Whether she just didn't get it or simply refused to let anything undermine her beloved project and 40 years of teaching it, my epiphany was offhandedly dismissed and I was firmly reprimanded to follow the directions as given.

The snickering from my gooey classmates at the scolding added a surreal reminiscent touch to this 'back in school' experience, as did the compulsion to disobey and finish the project accurately anyway. Which I did.

After class I brought my work of art home and even had it taped to a ceiling for several weeks. But it wasn't the unique perspective required to view our Dipper as a dipper that left an impression on me so much as the sense of our isolation and the all but infinite possible alternate views that might await us in the next millenia or so of space travel.

By the way, I didn't really get an ' F '. In fact, my actual grade remains a mystery as our guest teacher didn't come within 20 feet of me for the rest of the presentation.
That distance depending, of course, on where you were watching us from.
Here are the asterism stars' distances in lightyears for those wishing to share this fun and educational project with their club or class:

Alkaid 100
Mizar 78
Alioth 81
Megrez 65
Phecda 84
Merak 79
Dubhe 124
[Left Ascension, September '08]

Caldwell Fever

c76 in Scorpius [courtesy of DSS]
I bagged the Caldwells as an elective project en route to the A.L. Master Observer's award and found them to be a worthy and, in a few cases, challenging DSO refresher course. By request, the following is a jump-start for those in pursuit of Sir Patrick's favorite 109 non-Messier treasures. His concept was a forefather of post-Messier collections which has inspired, often by its notoriety, the slew of individual lists we see today. For the intermediate observer, this is a very nice warm-up for the Herschel 400 as most of the northern Caldwells also appear in that list.
Only 70 targets are required to receive this award, making the program available to observers in either hemisphere (but don't let that stop you from traveling to enjoy the rest). The targets being numbered by declination also gives a much more intuitive idea as to their local altitude and availability.
Prefacing the Caldwell catalogue designation are the host constellation, its mid-point midnight culmination date, and respective Pocket Sky Atlas chart(s). Multiple targets within a constellation are ordered in suggested search sequences. Along with the object type, magnitude, and radec, an additional identifier is included for those who have not yet memorized this iconic deepsky database.
cma / jan02 / psa27
c64 oc 4.1 0719-2457 (ngc2362)
c58 oc 7.2 0718-1537 (ngc2360)
gem / jan05 / psa25
c39 pn $9.90729+2055$ (ngc2392)
mon / jan05 / psa25, 26
c50 oc $4.80632+0452$ (ngc2244)
c49 bn - 0632+0503 (ngc2237-9)
c46 bn 10.0 0639+0844 (ngc2261)
c54 oc 7.6 0800-1047 (ngc2506)
pup / jan08 / psa28
c71 oc 5.8 0752-3833 (ngc2477)
lyn / jan19 / psa23
c25 gc $10.40738+3853$ (ngc2419)
cnc / jan30 / psa24
c48 gx 10.3 0910+0702 (ngc2775)
car / jan31 / psa39, 38
c96 oc 3.8 0758-6052 (ngc2516)
c90 pn 9.7 0921-5819 (ngc2867)
c92 bn 6.2 1044-5952 (ngc3372)
c102 oc 1.9 1043-6424 (ic2602)
c91 oc 3.0 1106-5840 (ngc3532)
vel / feb13 / psa39
c85 oc 2.5 0840-5304 (ic2391)
c79 gc 6.7 1018-4625 (ngc3201)
c74 pn 8.2 1008-4026 (ngc3132)
sex / feb22 / psa37
c53 gx 9.1 1005-0743 (ngc3115)
cha / mar01 / psa30
c109 pn - 1010-8052 (ngc3195)
leo / mar01 / psa34
c40 gx 10.9 1120+1821 (ngc3626)
hya / mar15 / psa36, 46
c59 pn 8.6 1025-1838 (ngc3242)
c66 gc 10.2 1440-2632 (ngc5694)
cru / mar28 / psa49
c99 dn - 1253-6300 (coalsack)
c98 oc 6.9 1242-6258 (ngc4609)
c94 oc 4.2 1254-6020 (ngc4755)
cen / mar30 / psa49, 48
c100 oc 4.5 1137-6302 (ic2944)
c97 oc 5.3 1136-6137 (ngc3766)
c80 gc 3.6 1327-4729 (ngc5139)
c83 gx 9.5 1306-4928 (ngc4945)
c77 gx 7.0 1326-4301 (ngc5128)
c84 gc 7.6 1346-5122 (ngc5286)
mus / mar30 / psa50
c108 gc 7.8 1226-7240 (ngc4372)
c105 gc 7.3 1300-7053 (ngc4833)
com / apr02 / psa45
c36 gx 9.8 1236+2758 (ngc4559)
c38 gx $9.61236+2559(\mathrm{ngc} 4565)$
c35 gx 11.4 1300+2759 (ngc4889)
cvn / apr07 / psa43
c26 gx 10.6 1218+3749 (ngc4244)
c32 gx $9.31242+3232$ (ngc4631)
c29 gx 9.8 1311+3703 (ngc5005)
c21 gx $9.41228+4406$ (ngc4449)
vir / apr11 / psa45
c52 gx 9.3 1249-0548 (ngc4697)
cir / apr30 / psa48
c88 oc 7.9 1506-5536 (ngc5823)
boo / may02 / psa44
c45 gx 10.2 1338+0853 (ngc5248)
nor / may19 / psa58
c89 oc 5.4 1619-5754 (ngc6087)
aps / may21 / psa60
c107 gc 9.3 1626-7212 (ngc6101)
tra / may23 / psa60
c95 oc 5.1 1604-6030 (ngc6025)
dra / may24 / psa31, 51
c3 gx 9.7 1217+6928 (ngc4236)
c6 pn 8.8 1759+6638 (ngc6543)
crv / may28 / psa36
c60 gx 11.3 1202-1852 (ngc4038)
c61 gx 13.0 1202-1853 (ngc4039)
sco / jun03 / psa58
c76 oc 2.6 1654-4148 (ngc6231)
c75 oc 5.8 1626-4040 (ngc6124)
c69 pn 12.8 1714-3706 (ngc6302)
ara / jun 10 / psa58
c82 oc 5.2 1641-4846 (ngc6193)
c86 gc 5.6 1741-5340 (ngc6397)
c81 gc 8.1 1726-4825 (ngc6352)
cra / jun30 / psa69
c78 gc 6.6 1808-4342 (ngc6541)
c68 bn 9.7 1902-3657 (ngc6729)
sgr / jul07 / psa66
c57 gx 9.3 1945-1448 (ngc6822)
pav / jul15 / psa70
c93 gc 5.4 1911-5959 (ngc6752)
c101 gx 9.0 1910-6351 (ngc6744)
vul / jul25 / psa62
c37 oc 5.7 2012+2629 (ngc6885)
cyg / jul30 / psa62
c15 pn 9.8 1945+5031 (ngc6826)
c27 bn 7.5 2012+3821 (ngc6888)
c20 bn $6.02059+4420$ (ngc7000)
c33 sn - 2056+3143 (ngc6992/5)
c34 sn - 2046+3043 (ngc6960)
c19 bn 10.0 2154+4716 (ic5146)
del / jul31 / psa64
c47 gc 8.9 2034+0724 (ngc6934)
c42 gc 10.6 2102+1611 (ngc7006)
aqr / aug25 / psa77, 76
c55 pn 8.3 2104-1122 (ngc7009)
c63 pn 6.5 2230-2048 (ngc7293)
lac / aug28 / psa73
c16 oc $6.42215+4953$ (ngc7243)
peg / sep01 / psa74
c30 gx $9.52237+3425$ (ngc 7331)
c44 gx $11.02305+1219$ (ngc7479)
c43 gx $10.50003+1609$ (ngc7814)
tuc / sep 17 / psa80
c106 gc 4.0 0024-7205 (ngc104)
c104 gc 6.6 0103-7051 (ngc362)
scl / sep26 / psa09
c72 gx 8.2 0015-3911 (ngc55)
c70 gx 8.1 0055-3741 (ngc300)
c65 gx 7.1 0048-2517 (ngc253)
cep / sep29 / psa73, 71
c12 gx 9.7 2035+6009 (ngc6946)
c4 bn $6.82102+6812$ (ngc7023)
c9 bn $7.72259+6237$ (sh2-155)
c2 pn $11.60013+7232$ (ngc40)
c1 oc $8.10044+8520$ (ngc 188)
cas / oct09 / psa03, 01
cl1 bn $7.02321+6112$ (ngc7635)
c18 gx $9.20039+4820$ (ngc 185)
c17 gx $9.30033+4830$ (ngc 147)
c13 oc $6.40119+5820$ (ngc457)
c10 oc $7.10146+6115$ (ngc663)
c8 oc $9.50130+6318$ (ngc559)
and / oct09 / psa03, 02
c22 pn 9.2 2326+4233 (ngc7662)
c28 oc 5.7 0158+3741 (ngc752)
c23 gx 9.9 0223+4221 (ngc891)
cet / oct15 / psa07
c62 gx 8.9 0047-2046 (ngc247)
c56 pn 8.0 0047-1153 (ngc246)
c51 gx $9.00105+0207$ (ic1613)
for / nov02 / psa06
c67 gx 9.2 0246-3017 (ngc 1097)
per / nov07 / psa02
c14 doc 4.3 0220+5708 (ngc869/884)
c24 gx $11.60320+4131$ (ngc1275)
hor / nov10 / psa08
$\mathrm{c} 87 \mathrm{gc} 8.40312-5513$ (ngc 1261)
tau / nov30 / psa15
c41 oc $1.00427+1600$ (mel25)
dor / dec17 / psa20, D
c103 bn 1.0 0539-6906 (ngc2070)
col / dec 18 / psa18
c73 gc 7.3 0514-4003 (ngc 1851)
aur / dec21 / psa12
c31 bn $6.00516+3416$ (ic405)
cam / dec23 / psa11, 21
c5 gx 9.2 0347+6806 (ic342)
c7 gx $8.90737+6536$ (ngc2403)

ISS Outreach Fun and Facts

Stephen Saber

[image courtesy of NASA]
A small family gathering and near-overhead pass of the space station coincided with a long overdue break from the snowstorms and dreary clouds.
As a preview to the pass I shared some YouTube videos of ISS lunar and solar transits, close-up webcam trackings, and relative speed sims across the Earth's surface. Enduring the bitter zero degree temperature outside was a small price to pay for the event. The trek across the grand northwest to southeast arc lasted nearly

6 minutes with the station's acre of solar panels reflecting a peak brightness rivaling Venus. Luna was also high in the sky, and as the ISS headed in its general direction I had to reassure my little niece that there was no danger of the station running into our moon. Meanwhile, my sister was busy on her cellphone calling neighbors and screaming at them to hurry up and look outside.
A memorable experience for all, and we paid our respects by giving the crew a symbolic group wave.

Here's some basic info for others finding themselves in the position of narrating and fielding questions during the passes:

The ISS is traveling $17,500 \mathrm{mph}$ (300 miles per minute) at an average altitude of 240 miles, completing an orbit about every 90 minutes.

The space station, including its large solar arrays, spans the length of a U.S. football field, including the end zones, and weighs 400 tons. With a crew of six astronauts, the complex has more livable area than a fivebedroom house, and has two bathrooms and a gymnasium.

The station marked its 10th anniversary of continuous human habitation on Nov 2, 2010. It has been visited by 196 individuals from eight different countries. There have been 103 launches to the space station: 67 Russian vehicles, 34 space shuttles, one European and one Japanese vehicle.

150 spacewalks totaling more than 950 hours have been conducted in support of space station assembly.
At its 10 year anniversary, the station had traveled the equivalent of eight round trips to our sun, or about 1.7 billion miles on its odometer.

100 Southern Sky Double Stars Stephen Saber

[muLupus courtesy of DSS]

No, it's not an Astronomical League Observe Program. But the southern sky certainly has its share of beautiful and interesting doubles, and I wanted to be ready for them on my next trip below the equator.
Here's a list of 100 gems for residents and northern visitors, including the SkyAtlas 2000 charts where each can be found. Special thanks to the folks at IIS for their valuable contributions.
beta1Tuc SA 24
0032 -62 57 mag 4.5, 5.0@ 27.1"
COO3 SA 24
00 45-62 30 mag 6.5, 8.5 @ 2.4"
lambdaTuc SA 24
0052 -69 30 mag 6.6, $8.0 @ 21.0^{\prime \prime}$
betaPhe SA 18
0106 -46 42 mag 4.0, 4.0 @ 1.4"
zetaPhe SA 24
0108-55 15 mag 4.0, 7.0, 8.0 @ 0.8", 6.4"
kappaTuc SA 24
0116-6852mag 5.1, 7.3@ 5.2"
DUN5 SA 24
01 40-56 11 mag 5,8, 5.9 @ 10.5"
epsilonScl SA 18
0146-25 02 mag 5.5, 8.3 @ 4.7"
omegaFor SA 18
0234-28 13 mag 5.0, 7.7 @ 10.9"
DUN7 SA 24
0240 -59 33 mag 7.0, 7.0@ 36.7"
thetaEri SA 18
0258-40 18 mag 3.4, 4.5 @ 8.3"
HJ3568 SA 24
03 07-78 59 mag 5.5, $8.0 @ 15.4^{\prime \prime}$
alphaFor SA 18
03 12-29 00 mag 4.0, 7.0 @ 1.9"
zetaRet SA 24
0318-6230mag 5.2, 5.5@130"
DUN16 SA 18
03 49-37 37 mag 4.9, 5.4@ 8.0"
thetaRet SA 24
0418-6315mag 6.2, 8.2 @ 4.0"
RMK4 SA 24
0424-5704mag 7.1, 7.5@ 5.7"
iotaPic SA 24
0451 -53 27 mag 5.6, 6.4@ 12.5"
gammaCae SA 19
0504-35 28 mag 4.5, 8.0 @ 2.9"
thetaPic SA 24
05 25-52 19 mag 7.0, 7.0 @ 38.0"
betaLep SA 19
05 28-20 45 mag 3.0, 7.5 @ 2.3"
DUN26 SA 24
0612 -65 31 mag 7.0, 8.5 @ 20.9"

HJ3869 SA 19
0633-3201mag 5.7, 7.7@ 24.9"

HJ3891 SA 19
0646-3057mag 6.1,8.4@4.9"
epsilonCMa SA 19
0659-28 58 mag 1.5, 8.0@ 7.5"
gammaVol SA 25
07 09-70 29 mag 3.9, 5.8@ 13.6"

HJ3945 SA 19
0717-2318mag4.8,6.8@26.8"
HJ3997 SA 24
07 35-74 16 mag 7.0, 7.0@ 2.0"
k1+2Puppis SA 19
0739-2649mag 4.4, 4.6@ 9.8"
epsilonVol SA 25
08 08-68 36 mag 4.5, 8.0@ 6.1"
gammaVel SA 20
08 09-47 20 mag 2.3, 4.4, 8.5, 9.4
(a) 41.2", 62.3", 94.0"

RMK8 SA 25
08 15-62 54 mag 5.3, 7.6@ 3.6"
DUN70 SA 20
08 30-44 43 mag 5.0, 6.5@ 5.0"
deltaVel SA 25
0845-5441mag 2.1, 5.1, 10.5@ 2.6", 69.5"

DUN74 SA 25
0857-5913mag 4.9,6.6@40"
zetaAnt SA 20
09 31-3153mag 6.3, 7.2@ 8.0"
DUN82 SA 25
09 33-8600 mag 7.4, 8.0@ 15.6"
upsilonCar SA 25
0947 -65 03 mag 3.1, 6.1@ 5.0"
DUN81 SA 20
0954-4517mag 5.7, 7.9@ 5.4"
DUN95 SA 25
1039-5536mag4.5,6.5@ 51.8"

HR4179 SA 25
1039 -58 49 mag 6.2, $8.0 @ 26.3^{\prime \prime}$
DUN94 SA 25
1039-59 11 mag 4.8, 8.2 @ 14.5"
muVel SA 20
1047-49 25 mag 2.9, 6.6@ 2.6"
HJ4383 SA 25
1054-7042mag 6.5, 7.0 @ 1.5"
HJ4432 SA 25
1123 -64 27 mag 5.5, 7.5 @ 2.5"
BSO6 SA 20
11 29-42 40 mag 5.1, 7.4@ 13.1"
HJ4455 SA 20
1137-33 34 mag 6.0, 8.1 @ 3.3"
DUN114 SA 20
1140 -38 06 mag 6.5, $8.0 @ 17.0^{\prime \prime}$
HR4628 SA 21
1210-3442mag 6.3, 8.3@3.2"
DCen SA 21
1214-4543 mag 5.5, 6.6@ 2.9"
alphaCru SA 25
1227-63 05 mag 1.5, 1.8, 4.8 @ 4.4", 90.0"
gammaCru SA 25
1232 -57 06 mag 1.8, 6.5 @ 125"
betaMus SA 25
1246-68 06 mag 3.7, 4.0@ 1.4"
betaCru SA 25
1248-5943mag 1.3, 7.2@ 373"
muCru SA 25
1255-57 11 mag 3.9, 5.0@ 34.8"
thetaMus SA 25
1308 -65 18 mag 5.5, 8.0 @ 5.3"
JCen Sa 25
1323-6059 mag 4.5, 6.2@ 61.7"
OCen SA 25
1342 -54 53 mag 5.5, 7.0 @ 5.3"

3Cen SA 21

1352 -32 59 mag 4.5, 6.0 @ 7.9"
NCen SA 25
1352-5248 mag 5.5, 7.5@18.0"
4Cen SA 21
1353-3155mag 4.8, 8.5@14.8"
COO167 SA 25
1415-6142mag 6.5, 8.5 @ 2.8"
alphaCen SA 25
1440 -60 50 mag 0.0, 1.5 @ 8.3"
alphaCir SA 25
1443-6457 mag 3.4, 8.8 @ 15.7"
HR5520 SA 25
1453-7311 mag 5.9, 7.6@ 2.2"
piLup SA 21
1505-4703mag 4.6, 4.7 @ 1.7"
kappaLup SA 21
1512-4844 mag 4.1,6.0@ 26.1"
muLup SA 25
1519-4752 mag 5.0, 5.5, 7.0 @
1.0", 22.7"
gammaCir SA 25
1523-5919mag 5.0, 5.0 @ 0.9"
zetaCrB SA 21
1539 -36 38 mag 5.1, $6.0 @ 6.3^{\prime \prime}$
RMK20 SA 25
1548-65 26 mag 6.5, 6.5 @ 1.9"
2Sco SA 21
1554-25 19 mag 4.7, 7.4 @ 2.3"
xiLup SA 21
1557-3357 mag 5.5, 5.5@10.4"
etaLup SA 22
1600-3824 mag 3.5, 7.5@15.2"
deltaAps SA 26
1620 -78 41 mag 5.0, 5.0 @ 103"
sigmaSco SA 22
1621-2535mag 2.9, 8.7 @ 20.0"
epsilonNor SA 22
1627-4733mag 4.5, 7.5@22.0"
alphaSco SA 22
1629-26 26 mag 1.0, 5.4 @ 2.9"
RAra SA 26
1640 -56 59 mag 6.0, 8.5 @ 3.6"
36Oph SA 22
1715-26 33 mag 5.5, 5.5 @ 4.4"
44Ara SA 22
1719-46 39 mag 5.5, 8.5 @ 9.2"
HJ4978 SA 26
1750 -53 37 mag 6.0, $9.0 @ 12.3^{\prime \prime}$
HJ5014 SA 22
1807-4325mag 5.7, 5.7@0.9"
etaSgr SA 22
1818-3644mag 3.2, 7.8@ 3.6"
xiPav SA 26
1823-61 29 mag 4.3, 8.6@ 3.3"
kappaCrA SA 22
1833-3843 mag 6.0, 6.5@21.4"
gammaCrA SA 22
1906-3704mag 4.8, 5.1 @ 1.3"
betaSgr SA 22
1923-4427mag 4.3, 7.4@28.3"
DUN227 SA 26
1953-5458 mag 6.0, 6.5@22.9"
kappaSgr SA 23
2024-4225mag 6.0,6.9@ 0.8"
muOct SA 26
2042-75 21 mag 7.1, 7.6@17.4"
RMK26 SA 26
2052-62 25 mag 6.6, 6.6 @ 2.5"
thetaInd SA 26
2120-5326mag 4.7, 7.2 @ 6.3"
HR8202 SA 23
2127-4233 mag 5.6, 8.2 @ 2.9"
lambdaOct SA 26
2151 -82 43 mag 5.5, 7.8 @ 2.8"
etaPsA SA 23
2201-28 27 mag 5.5,6.5@1.6"
betaPsA SA 23
22 32-3221mag 4.5, 7.5@30.4"
gammaPsA SA 23
2253-3252mag 4.6, 8.1@4.2"

DUN246 SA 26
2307-5041mag 6.1,6.8@8.7"
thetaPhe SA 23
2340-4638mag 6.6,7.2@3.9"

Herschel 400/PSA Index

Stephen Saber

Astronomical League Herschel 400 Club Logo

This supplement to S\&T's Pocket Sky Atlas lists the Herschel 400 targets by NGC, chart, constellation, and declination order. A more indepth atlas such as SA2000 or Uranometria is recommended for those on their maiden voyage through these often challenging DSOs.

H400/PSA Index by NGC \#

NGC typ/mag/con / radec / psa

040 pn 10.2 cep $0010+721501$
129 oc 10.0 cas $0027+595701$
136 oc 11.3 cas $0029+611501$
157 gx 11.5 cet 0035-0824 07
185 gx 11.0 cas $0039+482003$
205 gx 10.0 and $0040+414103(\mathrm{~m} 110)$
225 oc 09.0 cas $0043+614701$
246 pn 10.9 cet $0047-120707$
247 gx 10.0 cet 0047-2045 07
$253 \mathrm{gx} 07.5 \mathrm{scl} 0048-251807$
278 gx 12.5 cas $0052+473303$
$288 \mathrm{gc} 09.0 \mathrm{scl} 0053-263507$
381 oc 09.5 cas $0108+613501$
404 gx 12.0 and $0110+354303$
436 oc 09.5 cas $0116+584901$
457 oc 08.0 cas $0119+582001$
$488 \mathrm{gx} 11.5 \mathrm{psc} 0122+051605$
524 gx 12.0 psc $0125+093305$
559 oc 07.5 cas $0130+631801$
584 gx 12.0 cet $0131-065106$
596 gx 12.5 cet $0133-070106$
598 gx 07.0 tri $0134+304002(\mathrm{~m} 33)$
$613 \mathrm{gx} 11.0 \mathrm{scl} 0134-292406$
615 gx 12.5 cet $0135-071906$

637 oc 07.5 cas $0143+640001$
651 pn 12.0 per $0142+513402(\mathrm{~m} 76)$
654 oc 10.0 cas $0144+615301$
659 oc 10.0 cas $0144+604201$
663 oc 07.5 cas $0146+611501$
720 gx 11.5 cet 0153-1344 06
752 oc 06.5 and $0158+374102$
772 gx 11.5 ari $0159+190004$
779 gx 12.0 cet 2000-0558 06
869 oc 04.5 per $0219+570902$
884 oc 04.5 per $0222+570702$
891 gx 11.5 and $0223+422102$
908 gx 11.0 cet 0223-2113 06
936 gx 11.0 cet 0228-0109 04
1022 gx 12.5 cet 0239-0640 06
1023 gx 11.0 per $0241+390302$ 1027 oc 07.5 cas $0243+611302$ 1052 gx 12.0 cet 0241-0815 06 1055 gx 11.5 cet $0242+002604$ 1084 gx 12.0 eri 0246-0735 06 1245 oc 09.0 per $0315+471502$ 1342 oc 07.0 per $0332+372002$ 1407 gx 12.0 eri 0340-1834 17 1444 oc 06.5 per $0349+524002$ 1501 pn $13.5 \mathrm{cam} 0407+605511$ 1502 oc 05.5 cam $0408+622011$

1513 oc 09.0 per $0410+493113$ 1528 oc 06.5 per $0415+511413$ 1535 pn 10.5 eri 0414-1244 17
1545 oc 08.0 per $0421+501513$
1647 oc 06.0 tau $0446+190415$
1664 oc 08.0 aur $0451+434212$
1788 dn 09.0 ori 0507-0320 16
1817 oc 08.0 tau $0512+164214$
1857 oc 08.5 aur $0520+392112$
1907 oc 10.5 aur $0528+351912$
1931 cn 13.0 aur $0531+341512$
1961 gx 11.5 cam 0542+6923 11
1964 gx 11.5 lep 0533-2157 16
1980 cn 02.5 ori $0535-0555$ 16/B
1999 dn 10.0 ori 0537-0643 16
2022 pn 13.0 ori 0537-0643 14
2024 dn 10.0 ori $0542-015016$
2126 oc 10.0 aur $0603+495412$
2129 oc 07.0 gem $0601+231814$
2158 oc 12.0 gem $0608+061214$
2169 oc 07.0 ori $0608+135714$
2185 dn 10.0 mon 0611-0612 16
2186 oc 09.0 ori $0612+052714$
2194 oc 10.5 ori $0614+124814$
2204 oc 09.5 cma 0616-1839 16

2215 oc 08.5 mon 0621-0717 27
2232 oc 04.0 mon 0627-0445 27
2244 cn 05.0 mon $0632+045225$
2251 oc 08.5 mon $0635+082225$
2264 cn 04.0 mon $0641+095325$
2266 oc 09.5 gem $0643+265823$
2281 oc 07.0 aur $0649+410423$
2286 oc 08.5 mon 0648-0310 25
2301 oc 06.5 mon $0652+002825$
2304 oc 11.0 gem $0655+180125$
2311 oc 09.5 mon 0658-0435 27
2324 oc 09.0 mon $0704+010325$
2335 oc 09.5 mon 0707-1005 27
2343 oc 08.0 mon 0708-1039 27
2353 oc 05.0 mon 0715-1018 27
2354 oc $09.0 \mathrm{cma} 0714-254427$
2355 oc 09.5 gem $0717+134725$
2360 oc 09.0 cma 0719-1537 27
2362 oc 04.0 cma 0719-2457 27
2371 pn 13.0 gem 0726+2929 23
2372 pn 13.0 gem $0726+293023$
2392 pn 10.0 gem $0729+205525$
2395 oc 09.5 gem $0727+133525$
2403 gx 09.5 gem 0737+6537 21
2419 gc 11.5 lyn $0738+385323$
2420 oc 10.0 gem $0739+213425$
2421 oc 09.0 pup 0736-2037 26
2422 oc 04.5 pup $0737-143026$ (m47)
2423 oc 07.0 pup 0737-1352 26
2438 pn 11.5 pup 0742-1444 26
2440 pn 11.5 pup 0742-1813 26
2479 oc 09.6 pup 0755-1743 26
2482 oc 08.5 pup 0755-2418 26
2489 oc 09.5 pup 0756-3004 26
2506 oc 08.5 mon 0800-1047 26
2509 oc 09.5 pup 0801-1904 26
2527 oc 08.0 pup 0805-2810 26
2539 oc 08.0 pup 0810-1250 26
2548 oc 05.0 hya 0814-0548 26 (m48)
2567 oc 08.5 pup 0818-3038 26
2571 oc 07.5 pup 0819-2944 26
2613 gx 11.0 pyx 0833-2258 26
2627 oc 08.5 pyx 0837-2957 26
$2655 \mathrm{gx} 11.5 \mathrm{cam} 0856+781331$
2681 gx 11.5 uma $0854+511822$
2683 gx 11.0 lyn $0853+332522$
2742 gx 12.5 uma $0908+602931$
2768 gx 12.0 uma $0912+600331$
$2775 \mathrm{gx} 11.5 \mathrm{cnc} 0910+070324$
2782 gx 12.5 lyn $0914+400722$
2787 gx 12.0 uma $0919+691321$

2811 gx 13.0 hya 0916-1618 26
2841 gx 10.5 uma $0922+505922$ 2859 gx 12.0 lmi $0924+343222$ 2903 gx 10.0 leo $0932+212935$ 2950 gx 12.5 uma $0943+585131$ 2964 gx 12.5 leo $0943+315133$ 2974 gx 12.5 sex 0943-0343 37 2976 gx 11.5 uma $0947+675531$ 2985 gx 11.5 uma 0950+7217 21 3034 gx 09.5 uma 0956+6941 31 (m82)
3077 gx 11.5 uma 1003+6845 31
3079 gx 12.0 uma 1002+5541 22
3115 gx 10.5 sex 1005-0742 37
3147 gx 12.0 dra 1017+7325 21
3166 gx 11.5 sex 1014+0326 35
3169 gx 11.5 sex $1014+032935$
3184 gx 11.0 uma 1018+4125 33
3190 gx 12.0 leo $1018+214935$
3193 gx 12.5 leo $1019+215335$
3198 gx 11.0 uma 1020+4532 33
3226 gx 12.5 leo $1024+195334$
3227 gx 12.0 leo $1024+195134$
3242 pn 10.0 hya 1025-1838 36
$3245 \mathrm{gx} 12.0 \mathrm{lmi} 1027+283033$
3277 gx 13.0 lmi 1033+2830 33
$3294 \mathrm{gx} 12.0 \mathrm{lmi} 1036+371933$
3310 gx 11.5 uma 1039+5330 33
3344 gx 11.5 lmi 1044+2455 34
3377 gx 11.5 leo $1048+135934$
3379 gx 11.0 leo $1048+123534$ (m105)
3384 gx 11.5 leo $1048+123834$
$3395 \mathrm{gx} 12.5 \mathrm{lmi} 1050+325933$
3412 gx 12.0 leo 1051+1324 34
3414 gx 12.0 lmi 1051+2758 34
3432 gx 12.0 lmi 1053+363733
3486 gx 11.0 lmi 1101+2859 33
3489 gx 11.5 leo $1100+135434$
$3504 \mathrm{gx} 12.0 \mathrm{lmi} 1102+280734$
3521 gx 10.5 leo $1106+000234$
3556 gx 11.0 uma 1112+5541 43 (m108)
3593 gx 12.0 leo $1115+124934$
3607 gx 12.0 leo $1117+180434$
3608 gx 12.5 leo $1117+181034$
3610 gx 12.0 uma 1118+5848 31
3613 gx 12.0 uma 1119+5800 31
3619 gx 12.5 uma 1119+5746 31
3621 gx 10.0 hya 1118-3248 36
3626 gx 12.0 leo $1120+182234$
3628 gx 10.5 leo $1120+133634$
3631 gx 11.5 uma 1121+5311 32
3640 gx 12.0 leo $1121+031534$

3655 gx 13.0 leo $1123+163634$
3665 gx 12.5 uma 1123+3854 32
3675 gx 11.5 uma 1126+4336 32
3686 gx 12.0 leo $1128+171434$
3726 gx 11.0 uma 1133+4702 32
3729 gx 13.0 uma 1134+5308 32
3810 gx 11.5 leo $1141+112934$
3813 gx 13.0 uma 1141+3633 32
3877 gx 12.0 uma 1146+4730 32
3893 gx 11.5 uma 1149+4843 32
3898 gx 11.5 uma 1149+5606 32
3900 gx 12.5 leo $1149+270234$
3912 gx 13.0 leo $1150+262934$
3938 gx 11.0 uma 1153+4408 32
3941 gx 11.5 uma 1153+3700 32
3945 gx 12.0 uma 1153+6041 31
3949 gx 12.0 uma 1154+4752 32
3953 gx 11.0 uma 1154+5220 32
3962 gx 12.5 crt 1155-1358 36
3982 gx 12.5 uma 1157+5508 32
3992 gx 10.5 uma 1158+5323 32 (m109)
3998 gx 12.0 uma 1158+5528 32
4026 gx 12.0 uma 1159+5058 32
4027 gx 12.0 crv 1200-1915 36
4030 gx 11.5 vir 1200-0105 36
4036 gx 12.0 uma 1202+6154 31
4038 gx 10.5 crv 1202-1851 36
4041 gx 12.0 uma 1202+6209 31
4051 gx 11.5 uma 1204+4433 32
4085 gx 13.0 uma $1205+502232$
4088 gx 11.5 uma $1206+503332$
4102 gx 12.5 uma 1207+5243 32
$4111 \mathrm{gx} 12.0 \mathrm{cvn} 1207+430532$
$4143 \mathrm{gx} 12.5 \mathrm{cvn} 1210+423332$
4147 gc 11.0 com 1210+1833 45/C
4150 gx 12.5 com 1211+3025 32
$4151 \mathrm{gx} 11.5 \mathrm{cvn} 1211+392532$
4179 gx 12.0 vir $1213+011945$
4203 gx 12.0 com 1215+3313 32
$4214 \mathrm{gx} 10.5 \mathrm{cvn} 1216+362032$
4216 gx 11.0 vir $1216+1309$ 45/C
4245 gx 12.5 com 1218+2937 32
4251 gx 12.0 com 1218+2811 32
$4258 \mathrm{gx} 09.5 \mathrm{cvn} 1219+471932$ (m106)
4261 gx 11.5 vir 1219+0550 45
4273 gx 12.5 vir $1220+052145$
4274 gx 11.5 com 1220+2937 32
4278 gx 11.5 com 1220+2918 32
4281 gx 12.5 vir $1220+052445$
4293 gx 11.5 com 1221+1824 45/C
4303 gx 10.5 vir $1222+042945$ (m61)

4314 gx 11.5 com 1223+2954 32
$4346 \mathrm{gx} 12.5 \mathrm{cvn} 1223+470032$
4350 gx 12.0 com 1224+1642 45/C
4361 pn 11.0 crv 1225-1848 47
4365 gx 11.0 vir $1225+072045 / \mathrm{C}$
4371 gx 12.0 vir $1225+1143$ 45/C
4394 gx 12.0 com 1226+1813 45/C
4414 gx 11.5 com $1226+311432$
4419 gx 12.5 com 1227+1503 45/C
4429 gx 11.5 vir 1228+1107 45/C
4435 gx 12.0 vir $1228+130545 / \mathrm{C}$
4438 gx 11.0 vir $1228+130145 / \mathrm{C}$
4442 gx 11.5 vir 1228+0949 45/C
4448 gx 12.0 com 1228+2838 32
$4449 \mathrm{gx} 10.5 \mathrm{cvn} 1228+440632$
4450 gx 11.5 com 1229+1706 45/C
4459 gx 12.0 com 1229+1359 45/C
4473 gx 12.0 com 1230+1326 45/C
4477 gx 11.5 com 1230+1339 45/C
4478 gx 12.5 vir 1230+1220 45/C
$4485 \mathrm{gx} 13.0 \mathrm{cvn} 1231+414332$
$4490 \mathrm{gx} 11.0 \mathrm{cvn} 1231+413932$
4494 gx 11.0 com 1231+2547 45
4526 gx 11.0 vir 1234+0743 45/C
4527 gx 11.5 vir $1234+024045$
4535 gx 11.0 vir $1234+0813$ 45/C
4536 gx 11.0 vir $1235+021245$
4546 gx 12.0 vir 1236-0347 45
$4548 \mathrm{gx} 11.5 \mathrm{com} 1236+143045 / \mathrm{C}$ (m91)
4550 gx 12.5 vir $1236+121445 / \mathrm{C}$
4559 gx 10.5 com 1236+2758 32
4565 gx 10.5 com 1236+2600 32
4570 gx 12.0 vir 1237+0715 45/C
4594 gx 09.5 vir 1240-1137 47 (m104)
4596 gx 12.0 vir $1240+101145 / \mathrm{C}$
$4618 \mathrm{gx} 11.5 \mathrm{cvn} 1242+411032$
$4631 \mathrm{gx} 10.0 \mathrm{cvn} 1242+323332$
4636 gx 11.0 vir $1243+024245$
4643 gx 12.0 vir $1243+015945$
4654 gx 11.5 vir 1244+1308 45/C
$4656 \mathrm{gx} 11.0 \mathrm{cvn} 1244+321132$
4660 gx 12.5 vir 1246+1112 45/C
4665 gx 11.5 vir $1245+030445$
4666 gx 11.5 vir 1245-0027 45
4689 gx 12.0 com 1248+1346 45/C
4697 gx 10.5 vir 1249-0548 45
4698 gx 12.0 vir $1249+083045 / \mathrm{C}$
4699 gx 11.0 vir 1249-0840 47
4725 gx 10.0 com 1250+2533 45
4753 gx 11.0 vir 1252-0112 45
4754 gx 12.0 vir $1252+111945 / \mathrm{C}$

4762 gx 11.5 vir $1253+1114$ 45/C
4781 gx 12.0 vir 1254-1032 47
$4800 \mathrm{gx} 13.0 \mathrm{cvn} 1255+463232$
4845 gx 12.5 vir $1258+013545$
4856 gx 11.5 vir 1259-1502 47
4866 gx 12.0 vir 1259+1410 45/C
4900 gx 12.0 vir $1301+301245$
4958 gx 12.0 vir 1306-0801 47
4995 gx 12.0 vir 1310-0750 47
$5005 \mathrm{gx} 11.5 \mathrm{cvn} 1311+370343$
$5033 \mathrm{gx} 10.5 \mathrm{cvn} 1314+363643$
5054 gx 11.5 vir 1317-1639 47
$5195 \mathrm{gx} 09.5 \mathrm{cvn} 1330+471632$ (m51)
5248 gx 11.0 boo $1337+085344$
$5273 \mathrm{gx} 12.5 \mathrm{cvn} 1342+353843$
5322 gx 11.5 uma 1349+6012 32
5363 gx 11.5 vir $1356+051644$
5364 gx 11.0 vir $1356+050244$
5466 gc 10.5 boo $1406+283244$
5473 gx 13.0 uma 1405+5454 42
5474 gx 11.5 uma 1405+5340 42
5557 gx 13.0 boo $1418+362942$
5566 gx 11.5 vir $1420+035644$
5576 gx 12.0 vir $1421+031644$
5631 gx 12.5 uma 1427+5634 41
5634 gc 11.0 vir 1430-0559 44
5676 gx 12.0 boo $1433+492742$
5689 gx 12.5 boo $1436+484442$
5694 gc 11.0 hya 1440-2632 46
5746 gx 11.5 vir $1445+014944$
5846 gx 11.5 vir $1507+013646$
5866 gx 11.5 dra 1507+5545 42 (m102)
5897 gc 09.5 lib 1517-2101 46
5907 gx 11.5 dra $1516+561942$
5982 gx 12.5 dra 1539+5921 42
6118 gx 12.0 ser 1622-0217 54
6144 gc 11.0 sco 1627-2602 56
6171 gc 10.0 oph 1633-1303 56 (m107)
6207 gx 12.5 her $1643+365052$
6217 gx 12.5 umi 1633+7812 41
6229 gc 10.5 her 1647+4732 52
6235 gc 11.0 oph 1653-2211 56
6284 gc 10.5 oph 1705-2446 56
6287 gc 11.0 oph 1705-2242 56
6293 gc 09.5 oph 1710-2635 56
6304 gc 10.0 oph 1715-2928 56
6316 gc 10.0 oph 1717-2808 56
6342 gc 11.5 oph 1721-1935 56
6355 gc 09.5 oph 1724-2621 56
6356 gc 09.5 oph 1724-1749 56
6369 pn 14.0 oph 1729-2346 56

6401 gc 07.5 oph 1739-2355 56 6426 gc 12.5 oph $1744+030054$ 6440 gc 12.0 sgr 1749-2022 67 6445 pn 13.0 sgr 1749-2001 67 6451 oc 08.5 sco 1751-3013 58 6514 cn 05.0 sgr 1802-2302 67 (m20) 6517 gc 13.0 oph 1802-0858 67 6520 oc 07.5 sgr 1803-2754 67 6522 gc 10.5 sgr 1804-3002 67 6528 gc 11.0 sgr 1805-3003 67 6540 oc 14.0 sgr 1806-2749 67 6543 pn 09.0 dra 1759+6638 51 $6544 \mathrm{gc} 07.5 \mathrm{sgr} 1807-250067$ 6553 gc 10.0 sgr 1809-2554 67 6568 oc 08.5 sgr 1813-2136 67 6569 gc 10.5 sgr 1814-3150 67 6583 oc 12.0 sgr 1816-2208 67 $6624 \mathrm{gc} 09.5 \mathrm{sgr} 1824-302267$ 6629 pn 12.0 sgr 1826-2312 67 6633 oc 05.5 oph 1828-0634 65

6638 gc 10.0 sgr 1831-2530 67 $6642 \mathrm{gc} 10.5 \mathrm{sgr} 1832-232967$ 6645 oc 08.5 sgr 1833-1654 67 6664 oc 09.0 sct 1837-0813 67 6712 gc 10.0 sct 1853-0842 67 6755 oc 09.0 aql 1908+0414 65 6756 oc 10.5 aql 1909+0441 65 6781 pn 12.5 aql 1919+0632 65 6802 oc 09.0 vul 1931+2016 64 6818 pn 10.0 sgr 1944-1409 66 6823 cn 10.0 vul 1943+2318 62 6826 pn 09.0 cyg 1945+5031 62 6830 oc 09.0 vul 1951+2304 62 6834 oc 10.0 cyg 1952+2925 62
6866 oc 09.0 cyg 2004+4400 62 6882 oc 05.5 vul $2012+263362$ 6885 oc 09.0 vul $2012+262962$ 6905 pn 12.0 del $2022+200664$ 6910 oc 07.5 cyg 2023+4047 62 6934 gc 10.0 del 2034+2410 64 6939 oc 10.0 cep $2031+603861$ 6940 oc 06.5 vul 2035+2818 62 6946 gx 10.5 cep 2035+6009 61 7000 dn 05.5 cyg $2102+441262$ 7006 gc 11.5 del $2102+161164$
7008 pn 13.5 cyg $2101+543362$
7009 pn 08.5 aqr 2104-1122 77
7044 oc 11.5 cyg $2113+422962$
7062 oc 11.5 cyg $2123+462362$
7086 oc 11.0 cyg $2131+513562$
7128 oc 11.5 cyg $2144+534362$

7142 oc 10.0 cep $2146+654871$
7160 oc 06.5 cep $2154+623671$
7209 oc 08.0 lac $2205+463073$
7217 gx 11.5 peg $2208+312173$
7243 oc 06.5 lac $2215+495373$
7296 oc 09.5 lac $2228+521773$
7331 gx 10.5 peg 2237+3426 72
7380 cn 09.0 cep $2247+580672$
$7448 \mathrm{gx} 12.5 \mathrm{peg} 2300+155974$
$7479 \mathrm{gx} 11.5 \mathrm{peg} 2305+121974$
7510 oc 09.5 cep $2312+603471$
7606 gx 11.5 aqr 2319-0830 76
7662 pn 09.0 and $2326+423303$
7686 oc 08.0 and $2330+490803$
7723 gx 12.0 aqr 2339-1258 76
7727 gx 11.5 aqr 2340-1218 76
7789 oc 09.5 cas $2357+564403$
7790 oc 07.0 cas $2358+611303$
7814 gx 12.0 peg 0005+1608 74

H400/PSA Index by Chart \#

NGC typ/mag/con / radec / psa
040 pn 10.2 cep $0010+721501$
129 oc 10.0 cas $0027+595701$
136 oc 11.3 cas $0029+611501$
225 oc 09.0 cas $0043+614701$
381 oc 09.5 cas $0108+613501$
436 oc 09.5 cas $0116+584901$
457 oc 08.0 cas $0119+582001$
559 oc 07.5 cas $0130+631801$
637 oc 07.5 cas $0143+640001$
654 oc 10.0 cas $0144+615301$
659 oc 10.0 cas $0144+604201$
663 oc 07.5 cas $0146+611501$
598 gx 07.0 tri $0134+304002(\mathrm{~m} 33)$
651 pn 12.0 per $0142+513402(\mathrm{~m} 76)$
752 oc 06.5 and $0158+374102$
869 oc 04.5 per $0219+570902$
884 oc 04.5 per $0222+570702$
891 gx 11.5 and $0223+422102$
1023 gx 11.0 per $0241+390302$ 1027 oc 07.5 cas $0243+611302$ 1245 oc 09.0 per $0315+471502$
1342 oc 07.0 per $0332+372002$
1444 oc 06.5 per $0349+524002$
185 gx 11.0 cas $0039+482003$
205 gx 10.0 and $0040+414103$ (m110)
278 gx 12.5 cas $0052+473303$
404 gx 12.0 and $0110+354303$

7662 pn 09.0 and 2326+4233 03
7686 oc 08.0 and 2330+4908 03
7789 oc 09.5 cas $2357+564403$
7790 oc 07.0 cas $2358+611303$
772 gx 11.5 ari $0159+190004$
936 gx 11.0 cet 0228-0109 04
1055 gx 11.5 cet $0242+002604$
$488 \mathrm{gx} 11.5 \mathrm{psc} 0122+051605$ $524 \mathrm{gx} 12.0 \mathrm{psc} 0125+093305$

584 gx 12.0 cet 0131-0651 06 596 gx 12.5 cet 0133-0701 06 613 gx 11.0 scl 0134-2924 06 615 gx 12.5 cet 0135-0719 06 720 gx 11.5 cet 0153-1344 06 779 gx 12.0 cet 2000-0558 06 908 gx 11.0 cet 0223-2113 06 1022 gx 12.5 cet 0239-0640 06 1052 gx 12.0 cet 0241-0815 06 1084 gx 12.0 eri 0246-0735 06

157 gx 11.5 cet 0035-0824 07
246 pn 10.9 cet 0047-1207 07
247 gx 10.0 cet 0047-2045 07
253 gx 07.5 scl 0048-2518 07
$288 \mathrm{gc} 09.0 \mathrm{scl} 0053-263507$
1501 pn $13.5 \mathrm{cam} 0407+605511$
1502 oc 05.5 cam $0408+622011$
$1961 \mathrm{gx} 11.5 \mathrm{cam} 0542+692311$
1664 oc 08.0 aur $0451+434212$
1857 oc 08.5 aur $0520+392112$
1907 oc 10.5 aur $0528+351912$
1931 cn 13.0 aur $0531+341512$
2126 oc 10.0 aur $0603+495412$
1513 oc 09.0 per $0410+493113$
1528 oc 06.5 per $0415+511413$
1545 oc 08.0 per $0421+501513$
1817 oc 08.0 tau $0512+164214$
2022 pn 13.0 ori $0537-064314$
2129 oc 07.0 gem $0601+231814$
2158 oc 12.0 gem $0608+061214$
2169 oc 07.0 ori $0608+135714$
2186 oc 09.0 ori $0612+052714$
2194 oc 10.5 ori $0614+124814$
1647 oc 06.0 tau $0446+190415$

1788 dn 09.0 ori 0507-0320 16
1964 gx 11.5 lep 0533-2157 16
1980 cn 02.5 ori $0535-0555$ 16/B
1999 dn 10.0 ori $0537-064316$
2024 dn 10.0 ori $0542-015016$
2185 dn 10.0 mon 0611-0612 16
2204 oc 09.5 cma 0616-1839 16
1407 gx 12.0 eri 0340-1834 17
1535 pn 10.5 eri 0414-1244 17
2403 gx 09.5 gem 0737+6537 21
2787 gx 12.0 uma $0919+691321$
2985 gx 11.5 uma 0950+721721
3147 gx 12.0 dra 1017+7325 21
2681 gx 11.5 uma $0854+511822$
2683 gx 11.0 lyn $0853+332522$
2782 gx 12.5 lyn $0914+400722$
2841 gx 10.5 uma $0922+505922$
2859 gx 12.0 lmi $0924+343222$
3079 gx 12.0 uma 1002+5541 22
2266 oc 09.5 gem $0643+265823$
2281 oc 07.0 aur $0649+410423$
2371 pn 13.0 gem 0726+2929 23
2372 pn 13.0 gem $0726+293023$
2419 gc 11.5 lyn $0738+385323$
$2775 \mathrm{gx} 11.5 \mathrm{cnc} 0910+070324$
2244 cn 05.0 mon $0632+045225$
2251 oc 08.5 mon $0635+082225$
2264 cn 04.0 mon $0641+095325$
2286 oc 08.5 mon 0648-0310 25
2301 oc 06.5 mon $0652+002825$
2304 oc 11.0 gem $0655+180125$
2324 oc 09.0 mon $0704+010325$
2355 oc 09.5 gem $0717+134725$
2392 pn 10.0 gem 0729+2055 25
2395 oc 09.5 gem $0727+133525$
2420 oc 10.0 gem $0739+213425$
2421 oc 09.0 pup 0736-2037 26
2422 oc 04.5 pup 0737-1430 26 (m47)
2423 oc 07.0 pup 0737-1352 26
2438 pn 11.5 pup 0742-1444 26
2440 pn 11.5 pup 0742-1813 26
2479 oc 09.6 pup 0755-1743 26
2482 oc 08.5 pup 0755-2418 26
2489 oc 09.5 pup 0756-3004 26
2506 oc 08.5 mon 0800-1047 26
2509 oc 09.5 pup 0801-1904 26

2527 oc 08.0 pup 0805-2810 26
2539 oc 08.0 pup 0810-1250 26
2548 oc 05.0 hya 0814-0548 26 (m48)
2567 oc 08.5 pup 0818-3038 26
2571 oc 07.5 pup 0819-2944 26
2613 gx 11.0 pyx 0833-2258 26
2627 oc 08.5 pyx 0837-2957 26
2811 gx 13.0 hya 0916-1618 26
2215 oc 08.5 mon 0621-0717 27 2232 oc 04.0 mon 0627-0445 27 2311 oc 09.5 mon 0658-0435 27 2335 oc 09.5 mon 0707-1005 27 2343 oc 08.0 mon 0708-1039 27 2353 oc 05.0 mon 0715-1018 27 2354 oc 09.0 cma 0714-2544 27 2360 oc 09.0 cma 0719-1537 27
2362 oc 04.0 cma 0719-2457 27
$2655 \mathrm{gx} 11.5 \mathrm{cam} 0856+781331$
2742 gx 12.5 uma $0908+602931$
2768 gx 12.0 uma $0912+600331$
2950 gx 12.5 uma $0943+585131$
2976 gx 11.5 uma $0947+675531$
3034 gx 09.5 uma 0956+6941 31 (m82)
3077 gx 11.5 uma 1003+6845 31
3610 gx 12.0 uma 1118+5848 31
3613 gx 12.0 uma 1119+5800 31
3619 gx 12.5 uma 1119+5746 31
3945 gx 12.0 uma 1153+6041 31
4036 gx 12.0 uma 1202+6154 31
4041 gx 12.0 uma 1202+6209 31
3631 gx 11.5 uma 1121+5311 32
3665 gx 12.5 uma $1123+385432$
3675 gx 11.5 uma 1126+4336 32
3726 gx 11.0 uma 1133+4702 32
3729 gx 13.0 uma 1134+5308 32
3813 gx 13.0 uma 1141+3633 32
3877 gx 12.0 uma $1146+473032$
3893 gx 11.5 uma 1149+4843 32
3898 gx 11.5 uma 1149+5606 32
3938 gx 11.0 uma 1153+4408 32
3941 gx 11.5 uma 1153+3700 32
3949 gx 12.0 uma $1154+475232$
3953 gx 11.0 uma 1154+5220 32
3982 gx 12.5 uma 1157+5508 32
3992 gx 10.5 uma 1158+5323 32 (m109)
3998 gx 12.0 uma $1158+552832$
4026 gx 12.0 uma 1159+5058 32
4051 gx 11.5 uma 1204+443332
4085 gx 13.0 uma $1205+502232$
4088 gx 11.5 uma 1206+5033 32

4102 gx 12.5 uma 1207+5243 32
$4111 \mathrm{gx} 12.0 \mathrm{cvn} 1207+430532$
$4143 \mathrm{gx} 12.5 \mathrm{cvn} 1210+423332$
$4150 \mathrm{gx} 12.5 \mathrm{com} 1211+302532$
$4151 \mathrm{gx} 11.5 \mathrm{cvn} 1211+392532$
4203 gx 12.0 com 1215+3313 32
$4214 \mathrm{gx} 10.5 \mathrm{cvn} 1216+362032$
4245 gx 12.5 com 1218+2937 32
4251 gx 12.0 com 1218+2811 32
$4258 \mathrm{gx} 09.5 \mathrm{cvn} 1219+471932(\mathrm{~m} 106)$
4274 gx 11.5 com 1220+2937 32
4278 gx 11.5 com 1220+2918 32
4314 gx 11.5 com 1223+2954 32
$4346 \mathrm{gx} 12.5 \mathrm{cvn} 1223+470032$
$4414 \mathrm{gx} 11.5 \mathrm{com} 1226+311432$
$4485 \mathrm{gx} 13.0 \mathrm{cvn} 1231+414332$
$4490 \mathrm{gx} 11.0 \mathrm{cvn} 1231+413932$
4559 gx 10.5 com 1236+2758 32
4565 gx 10.5 com 1236+2600 32
4448 gx 12.0 com 1228+2838 32
$4449 \mathrm{gx} 10.5 \mathrm{cvn} 1228+440632$
$4618 \mathrm{gx} 11.5 \mathrm{cvn} 1242+411032$
$4631 \mathrm{gx} 10.0 \mathrm{cvn} 1242+323332$
$4656 \mathrm{gx} 11.0 \mathrm{cvn} 1244+321132$
$4800 \mathrm{gx} 13.0 \mathrm{cvn} 1255+463232$
$5195 \mathrm{gx} 09.5 \mathrm{cvn} 1330+471632$ (m51)
5322 gx 11.5 uma 1349+6012 32
2964 gx 12.5 leo $0943+315133$
3184 gx 11.0 uma $1018+412533$
3198 gx 11.0 uma $1020+453233$
$3245 \mathrm{gx} 12.0 \mathrm{lmi} 1027+283033$
3277 gx 13.0 lmi 1033+2830 33
$3294 \mathrm{gx} 12.0 \mathrm{lmi} 1036+371933$
3310 gx 11.5 uma 1039+5330 33
$3395 \mathrm{gx} 12.5 \mathrm{lmi} 1050+325933$
3432 gx 12.0 lmi 1053+363733
3486 gx $11.0 \mathrm{lmi} 1101+285933$
3226 gx 12.5 leo 1024+1953 34
3227 gx 12.0 leo 1024+1951 34
3344 gx 11.5 lmi 1044+2455 34
3377 gx 11.5 leo $1048+135934$
3379 gx 11.0 leo $1048+123534$ (m105)
3384 gx 11.5 leo $1048+123834$
3412 gx 12.0 leo $1051+132434$
$3414 \mathrm{gx} 12.0 \mathrm{lmi} 1051+275834$
3489 gx 11.5 leo $1100+135434$
3504 gx 12.0 lmi 1102+2807 34
3521 gx 10.5 leo $1106+000234$
3593 gx 12.0 leo $1115+124934$
3607 gx 12.0 leo $1117+180434$

3608 gx 12.5 leo $1117+181034$ 3626 gx 12.0 leo 1120+1822 34 3628 gx 10.5 leo $1120+133634$ 3640 gx 12.0 leo $1121+031534$ 3655 gx 13.0 leo $1123+163634$ 3686 gx 12.0 leo $1128+171434$ 3810 gx 11.5 leo $1141+112934$ 3900 gx 12.5 leo $1149+270234$ 3912 gx 13.0 leo $1150+262934$

2903 gx 10.0 leo $0932+212935$ 3166 gx 11.5 sex 1014+0326 35 3169 gx 11.5 sex $1014+032935$ 3190 gx 12.0 leo $1018+214935$ 3193 gx 12.5 leo $1019+215335$

3242 pn 10.0 hya 1025-1838 36 3621 gx 10.0 hya 1118-3248 36 3962 gx 12.5 crt 1155-1358 36 4027 gx 12.0 crv 1200-1915 36 4030 gx 11.5 vir 1200-0105 36 4038 gx 10.5 crv 1202-1851 36

2974 gx 12.5 sex 0943-0343 37 3115 gx 10.5 sex 1005-0742 37

5631 gx 12.5 uma 1427+5634 41 $6217 \mathrm{gx} 12.5 \mathrm{umi} 1633+781241$

5473 gx 13.0 uma $1405+545442$
5474 gx 11.5 uma 1405+5340 42 5557 gx 13.0 boo $1418+362942$ 5676 gx 12.0 boo $1433+492742$ 5689 gx 12.5 boo $1436+484442$
5866 gx 11.5 dra 1507+5545 42 (m102)
5907 gx 11.5 dra 1516+5619 42
5982 gx 12.5 dra 1539+5921 42
3556 gx 11.0 uma 1112+5541 $43(\mathrm{~m} 108)$
$5005 \mathrm{gx} 11.5 \mathrm{cvn} 1311+370343$
$5033 \mathrm{gx} 10.5 \mathrm{cvn} 1314+363643$
$5273 \mathrm{gx} 12.5 \mathrm{cvn} 1342+353843$
5248 gx 11.0 boo $1337+085344$
5363 gx 11.5 vir $1356+051644$
5364 gx 11.0 vir $1356+050244$
5466 gc 10.5 boo $1406+283244$
5566 gx 11.5 vir 1420+0356 44
5576 gx 12.0 vir $1421+031644$
5634 gc 11.0 vir 1430-0559 44
5746 gx 11.5 vir $1445+014944$

4147 gc 11.0 com 1210+1833 45/C
4179 gx 12.0 vir $1213+011945$
4216 gx 11.0 vir $1216+1309$ 45/C
4261 gx 11.5 vir $1219+055045$
4273 gx 12.5 vir $1220+052145$
4281 gx 12.5 vir $1220+052445$
$4293 \mathrm{gx} 11.5 \mathrm{com} 1221+1824$ 45/C
4303 gx 10.5 vir $1222+042945$ (m61)
4350 gx 12.0 com 1224+1642 45/C
4365 gx 11.0 vir $1225+0720$ 45/C
4371 gx 12.0 vir $1225+1143$ 45/C
4394 gx 12.0 com 1226+1813 45/C
4419 gx 12.5 com 1227+1503 45/C
4429 gx 11.5 vir $1228+110745 / \mathrm{C}$
4435 gx 12.0 vir $1228+130545 / \mathrm{C}$
4438 gx 11.0 vir $1228+130145 / \mathrm{C}$
4442 gx 11.5 vir 1228+0949 45/C 4450 gx 11.5 com 1229+1706 45/C
4459 gx 12.0 com 1229+1359 45/C
4473 gx 12.0 com 1230+1326 45/C
4477 gx 11.5 com 1230+1339 45/C
4478 gx 12.5 vir $1230+122045 / \mathrm{C}$
4494 gx 11.0 com 1231+254745
4526 gx 11.0 vir $1234+0743$ 45/C 4527 gx 11.5 vir $1234+024045$ 4535 gx 11.0 vir $1234+0813$ 45/C 4536 gx 11.0 vir $1235+021245$ 4546 gx 12.0 vir 1236-0347 45 $4548 \mathrm{gx} 11.5 \mathrm{com} \mathrm{1236}+143045 / \mathrm{C}(\mathrm{m} 91)$ 4550 gx 12.5 vir $1236+1214$ 45/C 4570 gx 12.0 vir $1237+0715$ 45/C 4596 gx 12.0 vir $1240+101145 / \mathrm{C}$ 4636 gx 11.0 vir $1243+024245$
4643 gx 12.0 vir $1243+015945$
4654 gx 11.5 vir 1244+1308 45/C
4660 gx 12.5 vir $1246+1112$ 45/C
4665 gx 11.5 vir $1245+030445$
4666 gx 11.5 vir 1245-0027 45
4689 gx 12.0 com 1248+1346 45/C
4697 gx 10.5 vir 1249-0548 45
4698 gx 12.0 vir $1249+083045 / \mathrm{C}$
4725 gx 10.0 com 1250+2533 45
4753 gx 11.0 vir 1252-0112 45
4754 gx 12.0 vir $1252+111945 / \mathrm{C}$
4762 gx 11.5 vir $1253+1114$ 45/C
4845 gx 12.5 vir $1258+013545$
4866 gx 12.0 vir $1259+141045 / \mathrm{C}$
4900 gx 12.0 vir $1301+301245$
5694 gc 11.0 hya 1440-2632 46
5846 gx 11.5 vir $1507+013646$
5897 gc 09.5 lib 1517-2101 46

4361 pn 11.0 crv 1225-1848 47
4594 gx 09.5 vir 1240-1137 47 (m104)
4699 gx 11.0 vir 1249-0840 47
4781 gx 12.0 vir 1254-1032 47
4856 gx 11.5 vir 1259-1502 47
4958 gx 12.0 vir 1306-0801 47
4995 gx 12.0 vir 1310-0750 47
5054 gx 11.5 vir 1317-1639 47
6543 pn 09.0 dra 1759+6638 51
6207 gx 12.5 her 1643+3650 52
6229 gc 10.5 her $1647+473252$
6118 gx 12.0 ser 1622-0217 54
6426 gc 12.5 oph $1744+030054$
6144 gc 11.0 sco 1627-2602 56
6171 gc 10.0 oph 1633-1303 56 (m107)
6235 gc 11.0 oph 1653-2211 56
6284 gc 10.5 oph 1705-2446 56
6287 gc 11.0 oph 1705-2242 56
6293 gc 09.5 oph 1710-2635 56
6304 gc 10.0 oph 1715-2928 56
6316 gc 10.0 oph 1717-2808 56
6342 gc 11.5 oph 1721-1935 56
6355 gc 09.5 oph 1724-2621 56
6356 gc 09.5 oph 1724-174956
6369 pn 14.0 oph 1729-2346 56
6401 gc 07.5 oph 1739-2355 56
6451 oc 08.5 sco 1751-3013 58
6939 oc 10.0 cep 2031+6038 61
6946 gx 10.5 cep 2035+6009 61
6823 cn $10.0 \mathrm{vul} \mathrm{1943+2318} 62$
6826 pn 09.0 cyg 1945+5031 62
6830 oc 09.0 vul 1951+2304 62
6834 oc 10.0 cyg 1952+2925 62
6866 oc 09.0 cyg 2004+4400 62
6882 oc 05.5 vul 2012+2633 62
6885 oc 09.0 vul $2012+262962$
6910 oc 07.5 cyg 2023+4047 62
6940 oc $06.5 \mathrm{vul} 2035+281862$
7000 dn 05.5 cyg $2102+441262$
7008 pn 13.5 cyg $2101+543362$
7044 oc 11.5 cyg $2113+422962$
7062 oc 11.5 cyg $2123+462362$
7086 oc 11.0 cyg $2131+513562$
7128 oc 11.5 cyg $2144+534362$

6802 oc 09.0 vul 1931+2016 64 6905 pn 12.0 del 2022+2006 64 6934 gc 10.0 del 2034+2410 64 7006 gc 11.5 del $2102+161164$

6633 oc 05.5 oph 1828-0634 65 6755 oc 09.0 aql 1908+0414 65 6756 oc 10.5 aql 1909+0441 65 6781 pn 12.5 aql 1919+0632 65

6818 pn 10.0 sgr 1944-1409 66
6440 gc 12.0 sgr 1749-2022 67
6445 pn 13.0 sgr 1749-2001 67
6514 cn 05.0 sgr 1802-2302 67 (m20)
6517 gc 13.0 oph 1802-0858 67
6520 oc 07.5 sgr 1803-2754 67
6522 gc 10.5 sgr 1804-3002 67
6528 gc 11.0 sgr 1805-3003 67
6540 oc 14.0 sgr 1806-2749 67
$6544 \mathrm{gc} 07.5 \mathrm{sgr} 1807-250067$
6553 gc 10.0 sgr 1809-2554 67
6568 oc 08.5 sgr 1813-2136 67
6569 gc 10.5 sgr 1814-3150 67
6583 oc 12.0 sgr 1816-2208 67
$6624 \mathrm{gc} 09.5 \mathrm{sgr} 1824-302267$
6629 pn 12.0 sgr 1826-2312 67
6638 gc 10.0 sgr 1831-2530 67
6642 gc 10.5 sgr 1832-2329 67
6645 oc 08.5 sgr 1833-1654 67
6664 oc 09.0 sct 1837-0813 67
6712 gc 10.0 sct 1853-0842 67
7142 oc 10.0 cep $2146+654871$
7160 oc 06.5 cep $2154+623671$
7510 oc 09.5 cep $2312+603471$
7331 gx 10.5 peg $2237+342672$
7380 cn 09.0 cep $2247+580672$
7209 oc 08.0 lac $2205+463073$
7217 gx 11.5 peg $2208+312173$
7243 oc 06.5 lac $2215+495373$
7296 oc 09.5 lac $2228+521773$
$7448 \mathrm{gx} 12.5 \mathrm{peg} 2300+155974$
$7479 \mathrm{gx} 11.5 \mathrm{peg} 2305+121974$
$7814 \mathrm{gx} 12.0 \mathrm{peg} 0005+160874$
7606 gx 11.5 aqr 2319-0830 76
7723 gx 12.0 aqr 2339-1258 76
7727 gx 11.5 aqr 2340-1218 76
7009 pn 08.5 aqr 2104-1122 77

H400/PSA Index by Constellation

NGC typ/mag/con / radec / psa
205 gx 10.0 and $0040+414103(\mathrm{ml10})$
404 gx 12.0 and $0110+354303$
752 oc 06.5 and $0158+374102$
891 gx 11.5 and $0223+422102$
7662 pn 09.0 and $2326+423303$
7686 oc 08.0 and $2330+490803$
6755 oc 09.0 aql 1908+0414 65
6756 oc 10.5 aql 1909+0441 65
6781 pn 12.5 aql 1919+0632 65
7009 pn 08.5 aqr 2104-1122 77
7606 gx 11.5 aqr 2319-0830 76
7723 gx 12.0 aqr 2339-1258 76
7727 gx 11.5 aqr 2340-1218 76
772 gx 11.5 ari $0159+190004$
1664 oc 08.0 aur $0451+434212$
1857 oc 08.5 aur $0520+392112$
1907 oc 10.5 aur $0528+351912$
1931 cn 13.0 aur $0531+341512$
2126 oc 10.0 aur $0603+495412$
2281 oc 07.0 aur $0649+410423$
5248 gx 11.0 boo $1337+085344$
5466 gc 10.5 boo $1406+283244$
5557 gx 13.0 boo $1418+362942$
5676 gx 12.0 boo $1433+492742$
5689 gx 12.5 boo $1436+484442$
1501 pn 13.5 cam 0407+6055 11
1502 oc 05.5 cam $0408+622011$
$1961 \mathrm{gx} 11.5 \mathrm{cam} 0542+692311$
$2655 \mathrm{gx} 11.5 \mathrm{cam} 0856+781331$
129 oc 10.0 cas $0027+595701$
136 oc 11.3 cas $0029+611501$
185 gx 11.0 cas $0039+482003$
225 oc 09.0 cas $0043+614701$
278 gx 12.5 cas $0052+473303$
381 oc 09.5 cas $0108+613501$
436 oc 09.5 cas $0116+584901$
457 oc 08.0 cas $0119+582001$
559 oc 07.5 cas $0130+631801$
637 oc 07.5 cas $0143+640001$
654 oc 10.0 cas $0144+615301$
659 oc 10.0 cas $0144+604201$
663 oc 07.5 cas $0146+611501$

1027 oc 07.5 cas $0243+611302$ 7789 oc 09.5 cas $2357+564403$ 7790 oc 07.0 cas $2358+611303$

040 pn 10.2 cep $0010+721501$
6939 oc 10.0 cep $2031+603861$
6946 gx 10.5 cep 2035+6009 61
7142 oc 10.0 cep 2146+6548 71
7160 oc 06.5 cep $2154+623671$
7380 cn 09.0 cep $2247+580672$ 7510 oc 09.5 cep 2312+6034 71

157 gx 11.5 cet 0035-0824 07
246 pn 10.9 cet 0047-1207 07
247 gx 10.0 cet 0047-2045 07
584 gx 12.0 cet 0131-0651 06
596 gx 12.5 cet 0133-0701 06 615 gx 12.5 cet 0135-0719 06
720 gx 11.5 cet 0153-1344 06
779 gx 12.0 cet 2000-0558 06 908 gx 11.0 cet 0223-2113 06 936 gx 11.0 cet 0228-0109 04 1022 gx 12.5 cet 0239-0640 06 1052 gx 12.0 cet 0241-0815 06 1055 gx 11.5 cet $0242+002604$

2204 oc 09.5 cma 0616-1839 16
2354 oc $09.0 \mathrm{cma} 0714-254427$
2360 oc 09.0 cma 0719-1537 27
2362 oc 04.0 cma 0719-2457 27
$2775 \mathrm{gx} 11.5 \mathrm{cnc} 0910+070324$
4147 gc 11.0 com 1210+1833 45/C
4150 gx 12.5 com 1211+3025 32
4203 gx 12.0 com 1215+3313 32
4245 gx 12.5 com 1218+2937 32
4251 gx 12.0 com $1218+281132$
4274 gx 11.5 com 1220+2937 32
4278 gx 11.5 com $1220+291832$
4293 gx 11.5 com 1221+1824 45/C
4314 gx 11.5 com 1223+2954 32
4350 gx 12.0 com 1224+1642 45/C
4394 gx 12.0 com 1226+1813 45/C
4414 gx 11.5 com $1226+311432$
4419 gx 12.5 com 1227+1503 45/C
4448 gx 12.0 com $1228+283832$
4450 gx 11.5 com 1229+1706 45/C
4459 gx 12.0 com 1229+1359 45/C
4473 gx 12.0 com 1230+1326 45/C
4477 gx 11.5 com 1230+1339 45/C
4494 gx 11.0 com 1231+2547 45
$4548 \mathrm{gx} 11.5 \mathrm{com} 1236+143045 / \mathrm{C}(\mathrm{m} 91)$

4559 gx 10.5 com 1236+2758 32 $4565 \mathrm{gx} 10.5 \mathrm{com} 1236+260032$ 4689 gx 12.0 com 1248+1346 45/C 4725 gx 10.0 com 1250+2533 45

3962 gx 12.5 crt 1155-1358 36
4027 gx 12.0 crv 1200-1915 36
4038 gx 10.5 crv 1202-1851 36
4361 pn 11.0 crv 1225-1848 47
$4111 \mathrm{gx} 12.0 \mathrm{cvn} 1207+430532$
$4143 \mathrm{gx} 12.5 \mathrm{cvn} 1210+423332$
$4151 \mathrm{gx} 11.5 \mathrm{cvn} 1211+392532$
$4214 \mathrm{gx} 10.5 \mathrm{cvn} 1216+362032$
$4258 \mathrm{gx} 09.5 \mathrm{cvn} 1219+471932$ (m106)
$4346 \mathrm{gx} 12.5 \mathrm{cvn} 1223+470032$
$4449 \mathrm{gx} 10.5 \mathrm{cvn} 1228+440632$
$4485 \mathrm{gx} 13.0 \mathrm{cvn} 1231+414332$
$4490 \mathrm{gx} 11.0 \mathrm{cvn} 1231+413932$
$4618 \mathrm{gx} 11.5 \mathrm{cvn} 1242+411032$
$4631 \mathrm{gx} 10.0 \mathrm{cvn} 1242+323332$
$4656 \mathrm{gx} 11.0 \mathrm{cvn} 1244+321132$
$4800 \mathrm{gx} 13.0 \mathrm{cvn} 1255+463232$
$5005 \mathrm{gx} 11.5 \mathrm{cvn} 1311+370343$
$5033 \mathrm{gx} 10.5 \mathrm{cvn} 1314+363643$
$5195 \mathrm{gx} 09.5 \mathrm{cvn} 1330+471632$ (m51)
$5273 \mathrm{gx} 12.5 \mathrm{cvn} 1342+353843$
6826 pn 09.0 cyg 1945+5031 62
6834 oc 10.0 cyg 1952+2925 62
6866 oc 09.0 cyg 2004+4400 62
6910 oc 07.5 cyg 2023+4047 62
7000 dn 05.5 cyg $2102+441262$
7008 pn 13.5 cyg $2101+543362$
7044 oc 11.5 cyg $2113+422962$
7062 oc 11.5 cyg $2123+462362$
7086 oc 11.0 cyg $2131+513562$
7128 oc 11.5 cyg $2144+534362$
6905 pn 12.0 del 2022+2006 64
6934 gc 10.0 del $2034+241064$
7006 gc 11.5 del $2102+161164$
3147 gx 12.0 dra 1017+7325 21
5866 gx 11.5 dra 1507+5545 42 (m102)
5907 gx 11.5 dra $1516+561942$
5982 gx 12.5 dra 1539+5921 42
6543 pn 09.0 dra 1759+6638 51
1084 gx 12.0 eri 0246-0735 06
1407 gx 12.0 eri 0340-1834 17
1535 pn 10.5 eri 0414-1244 17

2129 oc 07.0 gem $0601+231814$ 2158 oc 12.0 gem $0608+061214$ 2266 oc 09.5 gem $0643+265823$ 2304 oc 11.0 gem $0655+180125$ 2355 oc 09.5 gem $0717+134725$ 2371 pn 13.0 gem 0726+2929 23 2372 pn 13.0 gem 0726+2930 23 2392 pn 10.0 gem $0729+205525$ 2395 oc 09.5 gem $0727+133525$ 2403 gx 09.5 gem 0737+6537 21 2420 oc 10.0 gem $0739+213425$

6207 gx 12.5 her $1643+365052$
6229 gc 10.5 her 1647+4732 52
2548 oc 05.0 hya $0814-054826$ (m48)
2811 gx 13.0 hya 0916-1618 26
3242 pn 10.0 hya 1025-1838 36
3621 gx 10.0 hya 1118-3248 36
5694 gc 11.0 hya 1440-2632 46
7209 oc 08.0 lac $2205+463073$
7243 oc 06.5 lac $2215+495373$
7296 oc 09.5 lac $2228+521773$
2903 gx 10.0 leo $0932+212935$
2964 gx 12.5 leo $0943+315133$
3190 gx 12.0 leo $1018+214935$
3193 gx 12.5 leo $1019+215335$
3226 gx 12.5 leo 1024+1953 34
3227 gx 12.0 leo $1024+195134$
3377 gx 11.5 leo $1048+135934$
3379 gx 11.0 leo $1048+123534$ (m105)
3384 gx 11.5 leo 1048+1238 34
3412 gx 12.0 leo $1051+132434$
3489 gx 11.5 leo $1100+135434$
3521 gx 10.5 leo $1106+000234$
3593 gx 12.0 leo $1115+124934$
3607 gx 12.0 leo $1117+180434$
3608 gx 12.5 leo $1117+181034$
3626 gx 12.0 leo $1120+182234$
3628 gx 10.5 leo $1120+133634$
3640 gx 12.0 leo $1121+031534$
3655 gx 13.0 leo $1123+163634$
3686 gx 12.0 leo $1128+171434$
3810 gx 11.5 leo $1141+112934$
3900 gx 12.5 leo $1149+270234$
3912 gx 13.0 leo $1150+262934$
1964 gx 11.5 lep 0533-2157 16
5897 gc 09.5 lib 1517-2101 46

2859 gx 12.0 lmi $0924+343222$
$3245 \mathrm{gx} 12.0 \mathrm{lmi} 1027+283033$
3277 gx 13.0 lmi 1033+2830 33
3294 gx $12.0 \mathrm{lmi} 1036+371933$
$3344 \mathrm{gx} 11.5 \mathrm{lmi} 1044+245534$
$3395 \mathrm{gx} 12.5 \mathrm{lmi} 1050+325933$
$3414 \mathrm{gx} 12.0 \mathrm{lmi} 1051+275834$
3432 gx $12.0 \mathrm{lmi} 1053+363733$
3486 gx $11.0 \mathrm{lmi} 1101+285933$
3504 gx 12.0 lmi 1102+2807 34
2419 gc 11.5 lyn $0738+385323$
2683 gx 11.0 lyn $0853+332522$
2782 gx 12.5 lyn $0914+400722$
2185 dn 10.0 mon 0611-0612 16 2215 oc 08.5 mon 0621-0717 27 2232 oc 04.0 mon 0627-0445 27 2244 cn 05.0 mon $0632+045225$ 2251 oc 08.5 mon $0635+082225$ 2264 cn 04.0 mon $0641+095325$ 2286 oc 08.5 mon 0648-0310 25 2301 oc 06.5 mon $0652+002825$ 2311 oc 09.5 mon 0658-0435 27 2324 oc 09.0 mon $0704+010325$ 2335 oc 09.5 mon 0707-1005 27 2343 oc 08.0 mon 0708-1039 27 2353 oc 05.0 mon 0715-1018 27 2506 oc 08.5 mon 0800-1047 26

6171 gc 10.0 oph 1633-1303 56 (m107)
6235 gc 11.0 oph 1653-2211 56
6284 gc 10.5 oph 1705-2446 56
6287 gc 11.0 oph 1705-2242 56
6293 gc 09.5 oph 1710-2635 56
6304 gc 10.0 oph 1715-2928 56
6316 gc 10.0 oph 1717-2808 56
6342 gc 11.5 oph 1721-1935 56
6355 gc 09.5 oph 1724-2621 56
6356 gc 09.5 oph 1724-1749 56
6369 pn 14.0 oph 1729-2346 56
6401 gc 07.5 oph 1739-2355 56
6426 gc 12.5 oph $1744+030054$
6517 gc 13.0 oph 1802-0858 67
6633 oc 05.5 oph 1828-0634 65
1788 dn 09.0 ori $0507-032016$
1980 cn 02.5 ori $0535-0555$ 16/B
1999 dn 10.0 ori $0537-064316$
2022 pn 13.0 ori 0537-0643 14
2024 dn 10.0 ori $0542-015016$

$$
2169 \text { oc } 07.0 \text { ori } 0608+135714
$$

$$
2186 \text { oc } 09.0 \text { ori } 0612+052714
$$

$$
2194 \text { oc } 10.5 \text { ori } 0614+124814
$$

7217 gx 11.5 peg $2208+312173$
7331 gx 10.5 peg $2237+342672$
$7448 \mathrm{gx} 12.5 \mathrm{peg} 2300+155974$
$7479 \mathrm{gx} 11.5 \mathrm{peg} 2305+121974$
7814 gx 12.0 peg 0005+1608 74
651 pn 12.0 per $0142+513402(\mathrm{~m} 76)$
869 oc 04.5 per $0219+570902$
884 oc 04.5 per $0222+570702$
1023 gx 11.0 per $0241+390302$
1245 oc 09.0 per $0315+471502$
1342 oc 07.0 per $0332+372002$
1444 oc 06.5 per $0349+524002$
1513 oc 09.0 per $0410+493113$
1528 oc 06.5 per $0415+511413$
1545 oc 08.0 per $0421+501513$
$488 \mathrm{gx} 11.5 \mathrm{psc} 0122+051605$
$524 \mathrm{gx} 12.0 \mathrm{psc} 0125+093305$
2421 oc 09.0 pup 0736-2037 26
2422 oc 04.5 pup 0737-1430 26 (m47)
2423 oc 07.0 pup 0737-1352 26
2438 pn 11.5 pup 0742-1444 26
2440 pn 11.5 pup 0742-1813 26
2479 oc 09.6 pup 0755-1743 26
2482 oc 08.5 pup 0755-2418 26
2489 oc 09.5 pup 0756-3004 26
2509 oc 09.5 pup 0801-1904 26
2527 oc 08.0 pup 0805-2810 26
2539 oc 08.0 pup $0810-125026$
2567 oc 08.5 pup 0818-3038 26
2571 oc 07.5 pup 0819-2944 26
2613 gx 11.0 pyx 0833-2258 26
2627 oc 08.5 pyx 0837-2957 26
253 gx 07.5 scl 0048-2518 07
288 gc $09.0 \mathrm{scl} 0053-263507$
$613 \mathrm{gx} 11.0 \mathrm{scl} 0134-292406$
6144 gc 11.0 sco 1627-2602 56
6451 oc 08.5 sco 1751-3013 58
6664 oc 09.0 sct 1837-0813 67
6712 gc 10.0 sct 1853-0842 67
6118 gx 12.0 ser 1622-0217 54

2974 gx 12.5 sex 0943-0343 37
3115 gx 10.5 sex 1005-0742 37
3166 gx 11.5 sex $1014+032635$
3169 gx 11.5 sex $1014+032935$
6440 gc 12.0 sgr 1749-2022 67
6445 pn 13.0 sgr 1749-2001 67
6514 cn 05.0 sgr 1802-2302 67 (m20)
6520 oc 07.5 sgr 1803-2754 67
6522 gc 10.5 sgr 1804-3002 67
6528 gc 11.0 sgr 1805-3003 67
6540 oc 14.0 sgr 1806-2749 67
$6544 \mathrm{gc} 07.5 \mathrm{sgr} 1807-250067$
6553 gc 10.0 sgr 1809-2554 67
6568 oc 08.5 sgr 1813-2136 67
6569 gc 10.5 sgr 1814-3150 67
6583 oc 12.0 sgr 1816-2208 67
6624 gc 09.5 sgr 1824-3022 67
6629 pn 12.0 sgr 1826-2312 67 6638 gc 10.0 sgr 1831-2530 67 $6642 \mathrm{gc} 10.5 \mathrm{sgr} 1832-232967$ 6645 oc 08.5 sgr 1833-1654 67 6818 pn 10.0 sgr 1944-1409 66

1647 oc 06.0 tau $0446+190415$
1817 oc 08.0 tau $0512+164214$
598 gx 07.0 tri $0134+304002(\mathrm{~m} 33)$
2681 gx 11.5 uma $0854+511822$
2742 gx 12.5 uma $0908+602931$
2768 gx 12.0 uma $0912+600331$
2787 gx 12.0 uma $0919+691321$
2841 gx 10.5 uma $0922+505922$
2950 gx 12.5 uma $0943+585131$
2976 gx 11.5 uma $0947+675531$
2985 gx 11.5 uma 0950+7217 21
3034 gx 09.5 uma 0956+6941 31 (m82)
3077 gx 11.5 uma 1003+6845 31
3079 gx 12.0 uma 1002+5541 22
3184 gx 11.0 uma $1018+412533$
3198 gx 11.0 uma $1020+453233$
3310 gx 11.5 uma 1039+5330 33
3556 gx 11.0 uma 1112+5541 $43(\mathrm{~m} 108)$
3610 gx 12.0 uma 1118+5848 31
3613 gx 12.0 uma 1119+5800 31
3619 gx 12.5 uma 1119+5746 31
3631 gx 11.5 uma $1121+531132$
3665 gx 12.5 uma 1123+3854 32
3675 gx 11.5 uma $1126+433632$
3726 gx 11.0 uma 1133+4702 32
3729 gx 13.0 uma $1134+530832$
3813 gx 13.0 uma 1141+3633 32

3877 gx 12.0 uma 1146+4730 32
3893 gx 11.5 uma 1149+4843 32
3898 gx 11.5 uma 1149+5606 32 3938 gx 11.0 uma 1153+4408 32 3941 gx 11.5 uma 1153+3700 32 3945 gx 12.0 uma 1153+6041 31 3949 gx 12.0 uma 1154+475232 3953 gx 11.0 uma 1154+5220 32 3982 gx 12.5 uma 1157+5508 32 3992 gx 10.5 uma 1158+5323 32 (m109) 3998 gx 12.0 uma $1158+552832$ 4026 gx 12.0 uma $1159+505832$ 4036 gx 12.0 uma 1202+6154 31 4041 gx 12.0 uma 1202+6209 31 4051 gx 11.5 uma 1204+443332 4085 gx 13.0 uma $1205+502232$ 4088 gx 11.5 uma 1206+5033 32 4102 gx 12.5 uma 1207+5243 32 5322 gx 11.5 uma 1349+6012 32 5473 gx 13.0 uma 1405+5454 42 5474 gx 11.5 uma 1405+5340 42 5631 gx 12.5 uma 1427+5634 41
$6217 \mathrm{gx} 12.5 \mathrm{umi} 1633+781241$
4030 gx 11.5 vir 1200-0105 36
4179 gx 12.0 vir $1213+011945$
4216 gx 11.0 vir $1216+1309$ 45/C
4261 gx 11.5 vir $1219+055045$
4273 gx 12.5 vir $1220+052145$
4281 gx 12.5 vir $1220+052445$
4303 gx 10.5 vir $1222+042945$ (m61)
4365 gx 11.0 vir $1225+0720$ 45/C
4371 gx 12.0 vir 1225+1143 45/C
4429 gx 11.5 vir $1228+1107$ 45/C
4435 gx 12.0 vir $1228+1305$ 45/C
4438 gx 11.0 vir 1228+1301 45/C
4442 gx 11.5 vir 1228+0949 45/C
4478 gx 12.5 vir 1230+1220 45/C
4526 gx 11.0 vir 1234+0743 45/C
4527 gx 11.5 vir $1234+024045$
4535 gx 11.0 vir 1234+0813 45/C
4536 gx 11.0 vir $1235+021245$
4546 gx 12.0 vir 1236-0347 45
4550 gx 12.5 vir $1236+1214$ 45/C
4570 gx 12.0 vir 1237+0715 45/C
4594 gx 09.5 vir 1240-1137 47 (m104)
4596 gx 12.0 vir 1240+1011 45/C
4636 gx 11.0 vir $1243+024245$
4643 gx 12.0 vir $1243+015945$
4654 gx 11.5 vir 1244+1308 45/C
4660 gx 12.5 vir $1246+1112$ 45/C

4665 gx 11.5 vir $1245+030445$
4666 gx 11.5 vir 1245-0027 45
4697 gx 10.5 vir 1249-0548 45
4698 gx 12.0 vir $1249+083045 / \mathrm{C}$
4699 gx 11.0 vir 1249-0840 47
4753 gx 11.0 vir 1252-0112 45
4754 gx 12.0 vir $1252+111945 / \mathrm{C}$
4762 gx 11.5 vir $1253+111445 / \mathrm{C}$
4781 gx 12.0 vir 1254-1032 47
4845 gx 12.5 vir $1258+013545$
4856 gx 11.5 vir 1259-1502 47
4866 gx 12.0 vir $1259+141045 / \mathrm{C}$
4900 gx 12.0 vir $1301+301245$
4958 gx 12.0 vir 1306-0801 47
4995 gx 12.0 vir 1310-0750 47
5054 gx 11.5 vir 1317-1639 47
5363 gx 11.5 vir 1356+0516 44
5364 gx 11.0 vir $1356+050244$
5566 gx 11.5 vir $1420+035644$
5576 gx 12.0 vir $1421+031644$
5634 gc 11.0 vir 1430-0559 44
5746 gx 11.5 vir 1445+0149 44
5846 gx 11.5 vir $1507+013646$
6802 oc 09.0 vul 1931+2016 64
6823 cn 10.0 vul $1943+231862$
6830 oc $09.0 \mathrm{vul} \mathrm{1951+230462}$
6882 oc 05.5 vul $2012+263362$
6885 oc 09.0 vul $2012+262962$
6940 oc 06.5 vul 2035+2818 62

H400/PSA Index by Declination

NGC typ /mag / con / radec / psa
$2655 \mathrm{gx} 11.5 \mathrm{cam} 0856+781331$
$6217 \mathrm{gx} 12.5 \mathrm{umi} 1633+781241$
3147 gx 12.0 dra 1017+7325 21
2985 gx 11.5 uma 0950+7217 21
040 pn 10.2 cep $0010+721501$ (c2)
3034 gx 09.5 uma 0956+6941 31 (m82)
$1961 \mathrm{gx} 11.5 \mathrm{cam} 0542+692311$
2787 gx 12.0 uma $0919+691321$
3077 gx 11.5 uma 1003+6845 31
2976 gx 11.5 uma 0947+6755 31
6543 pn 09.0 dra 1759+6638 51 (c6)
7142 oc 10.0 cep $2146+654871$
2403 gx 09.5 gem 0737+6537 21 (c7)
637 oc 07.5 cas $0143+640001$
559 oc 07.5 cas $0130+631801$ (c8)
7160 oc 06.5 cep $2154+623671$
1502 oc 05.5 cam $0408+622011$
4041 gx 12.0 uma 1202+6209 31

4036 gx 12.0 uma 1202+6154 31
654 oc 10.0 cas $0144+615301$
225 oc 09.0 cas $0043+614701$
1027 oc 07.5 cas $0243+613802$
381 oc 09.5 cas $0108+613501$
136 oc 11.3 cas $0029+613201$
663 oc 07.5 cas $0146+611401$ (c10)
7790 oc 07.0 cas $2358+611203$
1501 pn $13.5 \mathrm{cam} 0407+605511$ 659 oc 10.0 cas $0144+604201$ 3945 gx 12.0 uma 1153+6041 31 6939 oc 10.0 cep $2031+603861$ 7510 ос 09.5 сер $2312+603471$ 2742 gx 12.5 uma $0908+602931$ 5322 gx 11.5 uma 1349+6012 32 6946 gx 10.5 cep 2035+6009 61 (c12) 2768 gx 12.0 uma $0912+600331$ 129 oc 10.0 cas $0027+595701$ 5982 gx 12.5 dra 1539+5921 42 2950 gx 12.5 uma $0943+585131$ 436 oc 09.5 cas $0116+584901$ 3610 gx 12.0 uma 1118+5848 31 457 oc 08.0 cas $0119+582001$ (c13) 7380 cn 09.0 cep 2247+5806 72 3613 gx 12.0 uma 1119+5800 31 3619 gx 12.5 uma 1119+5746 31
869 oc 04.5 per $0219+570902$ (c14)
884 oc 04.5 per $0222+570702$ (c14a) 7789 oc 09.5 cas $2357+564403$ 5631 gx 12.5 uma 1427+5634 41 5907 gx 11.5 dra 1516+5619 42 3898 gx 11.5 uma 1149+5606 32 5866 gx 11.5 dra 1507+5545 42 (m102) 3079 gx 12.0 uma 1002+5541 22 3556 gx 11.0 uma 1112+5540 43 (m108) 3998 gx 12.0 uma 1158+5528 32 3982 gx 12.5 uma 1157+5508 32 5473 gx 13.0 uma 1405+5454 42 7008 pn 13.5 cyg $2101+543362$ 7128 oc 11.5 cyg 2144+5343 62 5474 gx 11.5 uma 1405+5340 42 3310 gx 11.5 uma 1039+5330 33 3992 gx 10.5 uma 1158+5323 32 (m109) 3631 gx 11.5 uma $1121+531132$ 3729 gx 13.0 uma $1134+530832$ 4102 gx 12.5 uma 1207+5243 32 1444 oc 06.5 per $0349+524002$ 3953 gx 11.0 uma 1154+5220 32 7296 oc 09.5 lac $2228+521773$ 7086 oc 11.0 cyg $2131+513562$ 651 pn 12.0 per $0142+513402(\mathrm{~m} 76)$
2681 gx 11.5 uma $0854+511822$

1528 oc 06.5 per $0415+511413$
2841 gx 10.5 uma $0922+505922$
4026 gx 12.0 uma 1159+5058 32
4088 gx 11.5 uma 1206+5033 32
6826 pn 09.0 cyg 1945+5031 62 (c15)
4085 gx 13.0 uma $1205+502232$
1545 oc 08.0 per $0421+501513$
2126 oc 10.0 aur $0603+495412$
7243 oc 06.5 lac $2215+495373$ (c16)
1513 oc 09.0 per $0410+493113$
5676 gx 12.0 boo $1433+492742$
7686 oc 08.0 and $2330+490803$
5689 gx 12.5 boo $1436+484442$
3893 gx 11.5 uma 1149+4843 32 185 gx 11.0 cas $0039+482003$ (c18)
3949 gx 12.0 uma 1154+475232 278 gx 12.5 cas $0052+473303$ 6229 gc 10.5 her $1647+473252$ 3877 gx 12.0 uma 1146+4730 32 $4258 \mathrm{gx} 09.5 \mathrm{cvn} 1219+471932(\mathrm{~m} 106)$ $5195 \mathrm{gx} 09.5 \mathrm{cvn} 1330+471632$ (m51) 1245 oc 09.0 per $0315+471502$
3726 gx 11.0 uma 1133+4702 32
$4346 \mathrm{gx} 12.5 \mathrm{cvn} 1223+470032$
$4800 \mathrm{gx} 13.0 \mathrm{cvn} 1255+463232$
7209 oc 08.0 lac $2205+463073$
7062 oc 11.5 cyg 2123+4623 62
3198 gx 11.0 uma 1020+453233
4051 gx 11.5 uma $1204+443332$
7000 dn 05.5 cyg $2102+441262$ (c20)
3938 gx 11.0 uma 1153+4408 32
$4449 \mathrm{gx} 10.5 \mathrm{cvn} 1228+440632$ (c21)
6866 oc 09.0 cyg 2004+4400 62
1664 oc 08.0 aur $0451+434212$
3675 gx 11.5 uma 1126+4336 32
$4111 \mathrm{gx} 12.0 \mathrm{cvn} 1207+430532$
7662 pn 09.0 and $2326+423203$ (c22)
$4143 \mathrm{gx} 12.5 \mathrm{cvn} 1210+423232$
7044 oc 11.5 cyg $2113+422962$
891 gx 11.5 and $0223+422102$ (c23)
$4485 \mathrm{gx} 13.0 \mathrm{cvn} 1231+414332$
205 gx 10.0 and $0040+414103(\mathrm{ml10})$
$4490 \mathrm{gx} 11.0 \mathrm{cvn} 1231+413932$
3184 gx 11.0 uma $1018+412533$
$4618 \mathrm{gx} 11.5 \mathrm{cvn} 1242+411032$
2281 oc 07.0 aur $0649+410423$
6910 oc 07.5 cyg 2023+4047 62
2782 gx 12.5 lyn $0914+400722$
$4151 \mathrm{gx} 11.5 \mathrm{cvn} 1211+392532$
1857 oc 08.5 aur $0520+392112$
1023 gx 11.0 per $0241+390302$
3665 gx 12.5 uma 1123+3854 32

2419 gc 11.5 lyn $0738+385323$ (c25)
752 oc 06.5 and $0158+374102$ (c28)
1342 oc 07.0 per $0332+372002$ $3294 \mathrm{gx} 12.0 \mathrm{lmi} 1036+371933$
$5005 \mathrm{gx} 11.5 \mathrm{cvn} 1311+370343$ (c29)
3941 gx 11.5 uma 1153+3700 32
6207 gx 12.5 her $1643+365052$
$3432 \mathrm{gx} 12.0 \mathrm{lmi} 1053+363733$
5033 gx 10.5 cvn 1314+3636 43
3813 gx 13.0 uma 1141+3633 32
5557 gx 13.0 boo $1418+362942$
$4214 \mathrm{gx} 10.5 \mathrm{cvn} 1216+362032$
404 gx 12.0 and $0110+354303$
$5273 \mathrm{gx} 12.5 \mathrm{cvn} 1342+353843$
1907 oc 10.5 aur $0528+351912$
2859 gx 12.0 lmi $0924+343222$
7331 gx 10.5 peg 2237+3426 72 (c30)
1931 cn 13.0 aur $0531+341512$
2683 gx 11.0 lyn $0853+332522$
4203 gx 12.0 com 1215+3313 32
$3395 \mathrm{gx} 12.5 \mathrm{lmi} 1050+325933$
$4631 \mathrm{gx} 10.0 \mathrm{cvn} 1242+323332$ (c32)
$4656 \mathrm{gx} 11.0 \mathrm{cvn} 1244+321132$
2964 gx 12.5 leo $0943+315133$
7217 gx 11.5 peg $2208+312173$
4414 gx 11.5 com 1226+3114 32
598 gx 07.0 tri $0134+304002(\mathrm{~m} 33)$
4150 gx 12.5 com 1211+3025 32
4900 gx 12.0 vir $1301+301245$
4314 gx 11.5 com 1223+2954 32
4274 gx 11.5 com 1220+2937 32
4245 gx 12.5 com 1218+2936 32
2372 pn 13.0 gem $0726+293023$
2371 pn 13.0 gem 0726+2929 23
6834 oc 10.0 cyg 1952+2925 62
4278 gx 11.5 com 1220+2918 32
3486 gx $11.0 \mathrm{lmi} 1101+285933$
4448 gx 12.0 com $1228+283832$
5466 gc 10.5 boo $1406+283244$
3277 gx $13.0 \mathrm{lmi} 1033+283133$
$3245 \mathrm{gx} 12.0 \mathrm{lmi} 1027+283033$
6940 oc 06.5 vul $2035+281862$
4251 gx 12.0 com 1218+2811 32
3504 gx $12.0 \mathrm{lmi} 1102+280734$
3414 gx 12.0 lmi 1051+2759 34
4559 gx 10.5 com 1236+2758 32 (c36)
3900 gx 12.5 leo $1149+270234$
2266 oc 09.5 gem $0643+265823$
6882 oc 05.5 vul $2012+263362$
3912 gx 13.0 leo $1150+262934$
6885 oc 09.0 vul 2012+2629 62 (c37)
$4565 \mathrm{gx} 10.5 \mathrm{com} 1236+260032$ (c38)

4494 gx 11.0 com 1231+2547 45 4725 gx 10.0 com 1250+2533 45 $3344 \mathrm{gx} 11.5 \mathrm{lmi} 1044+245534$ 6934 gc 10.0 del $2034+241064$ 2129 oc 07.0 gem $0601+231914$ 6823 cn 10.0 vul $1943+231862$ 6830 oc 09.0 vul 1951+2304 62 3193 gx 12.5 leo $1019+215335$
3190 gx 12.0 leo $1018+214935$ 2420 oc 10.0 gem $0739+213425$ 2903 gx 10.0 leo $0932+212935$ 2392 pn 10.0 gem $0729+205525$ (c39)
6802 oc 09.0 vul 1931+2016 64 6905 pn 12.0 del 2022+2006 64 3226 gx 12.5 leo $1024+195334$
3227 gx 12.0 leo $1024+195134$
1647 oc 06.0 tau $0446+190415$
772 gx 11.5 ari $0159+190004$
4147 gc 11.0 com 1210+1833 45/C
4293 gx 11.5 com 1221+1824 45/C
3626 gx 12.0 leo 1120+1822 34 (c40)
4394 gx 12.0 com 1226+1813 45/C
3608 gx 12.5 leo $1117+181034$
3607 gx 12.0 leo 1117+1804 34
2304 oc 11.0 gem $0655+180125$
3686 gx 12.0 leo $1128+171434$
4450 gx 11.5 com 1229+1706 45/C
4350 gx 12.0 com 1224+1642 45/C
1817 oc 08.0 tau $0512+164114$
3655 gx 13.0 leo $1123+163634$
7006 gc 11.5 del $2102+161164$ (c42)
$7814 \mathrm{gx} 12.0 \mathrm{peg} 0005+160874$ (c43)
$7448 \mathrm{gx} 12.5 \mathrm{peg} 2300+155974$
4419 gx 12.5 com 1227+1503 45/C
$4548 \mathrm{gx} 11.5 \mathrm{com} 1236+143045 / \mathrm{C}(\mathrm{m} 91)$
4866 gx 12.0 vir $1259+141045 / \mathrm{C}$
3377 gx 11.5 leo $1048+135934$
4459 gx 12.0 com 1229+1358 45/C
2169 oc 07.0 ori $0608+135714$
3489 gx 11.5 leo $1100+135434$
2355 oc 09.5 gem $0717+134725$
4689 gx 12.0 com 1248+1346 45/C
4477 gx 11.5 com 1230+1339 45/C
3628 gx 10.5 leo $1120+133634$
2395 oc 09.5 gem $0727+133525$
4473 gx 12.0 com 1230+1326 45/C
3412 gx 12.0 leo $1051+132434$
4216 gx 11.0 vir $1216+130945 / \mathrm{C}$
4654 gx 11.5 vir $1244+1308$ 45/C
4435 gx 12.0 vir $1228+1305$ 45/C
4438 gx 11.0 vir $1228+130145 / \mathrm{C}$
3593 gx 12.0 leo 1115+1249 34

2194 oc 10.5 ori $0614+124814$
3384 gx 11.5 leo $1048+123834$
3379 gx 11.0 leo $1048+123534$ (m105)
4478 gx 12.5 vir $1230+122045 / \mathrm{C}$
$7479 \mathrm{gx} 11.5 \mathrm{peg} 2305+121974$ (c44)
4550 gx 12.5 vir 1236+1214 45/C
4371 gx 12.0 vir 1225+1143 45/C
3810 gx 11.5 leo $1141+112934$
4754 gx 12.0 vir $1252+111945 / \mathrm{C}$
4762 gx 11.5 vir 1253+1114 45/C
4660 gx 12.5 vir $1246+1112$ 45/C
4429 gx 11.5 vir $1228+1107$ 45/C
4596 gx 12.0 vir $1240+101145 / \mathrm{C}$
2264 cn 04.0 mon $0641+095325$
4442 gx 11.5 vir 1228+0949 45/C
524 gx 12.0 psc $0125+093305$
2022 pn 13.0 ori $0537+090514$
5248 gx 11.0 boo $1337+085344$ (c45)
4698 gx 12.0 vir $1249+083045 / \mathrm{C}$
2251 oc 08.5 mon $0635+082225$
4535 gx 11.0 vir $1234+0813$ 45/C
4526 gx 11.0 vir $1234+0743$ 45/C
4365 gx 11.0 vir 1225+0720 45/C
4570 gx 12.0 vir 1237+0715 45/C
2775 gx $11.5 \mathrm{cnc} 0910+070324$ (c48)
6781 pn 12.5 aql 1919+0632 65
2158 oc 12.0 gem $0608+061214$
4261 gx 11.5 vir $1219+055045$
2186 oc 09.0 ori $0612+052714$
4281 gx 12.5 vir $1220+052445$
4273 gx 12.5 vir $1220+052145$
$488 \mathrm{gx} 11.5 \mathrm{psc} 0122+051505$
5363 gx 11.5 vir $1356+051544$
5364 gx 11.0 vir $1356+050244$
2244 cn 05.0 mon $0632+045225$ (c50)
6756 oc 10.5 aql 1909+0441 65
4303 gx 10.5 vir $1222+042945$ (m61)
6755 oc 09.0 aql 1908+0414 65
5566 gx 11.5 vir $1420+035644$
3169 gx 11.5 sex $1014+032935$
3166 gx 11.5 sex $1014+032635$
5576 gx 12.0 vir $1421+031644$
3640 gx 12.0 leo $1121+031534$
4665 gx 11.5 vir $1245+030445$
6426 gc 12.5 oph $1744+030054$
4636 gx 11.0 vir $1243+024245$
4527 gx 11.5 vir $1234+024045$
4536 gx 11.0 vir $1235+021245$
4643 gx 12.0 vir $1243+015945$
5746 gx 11.5 vir $1445+014944$
5846 gx 11.5 vir $1507+013646$
4845 gx 12.5 vir $1258+013545$

4179 gx 12.0 vir $1213+011945$
2324 oc 09.0 mon $0704+010325$
2301 oc 06.5 mon $0652+002825$ 1055 gx 11.5 cet $0242+002604$ 3521 gx 10.5 leo $1106+000234$ 4666 gx 11.5 vir 1245-0027 45 4030 gx 11.5 vir 1200-0105 36 936 gx 11.0 cet $0228-010904$ 4753 gx 11.0 vir 1252-0112 45 2024 dn 10.0 ori $0542-015016$ 6118 gx 12.0 ser 1622-0217 54 2286 oc 08.5 mon 0648-0310 25 1788 dn 09.0 ori $0507-032016$ 2974 gx 12.5 sex 0943-0343 37 4546 gx 12.0 vir 1236-0347 45
2311 oc 09.5 mon 0658-0435 27
2232 oc 04.0 mon 0627-0445 27
2548 oc 05.0 hya $0814-054526$ (m48)
4697 gx 10.5 vir 1249-0548 45 (c52)
1980 cn 02.5 ori $0535-0555$ 16/B 779 gx 12.0 cet 2000-0558 06 5634 gc 11.0 vir 1430-0559 44
2185 dn 10.0 mon 0611-0612 16
6633 oc 05.5 oph 1828-0634 65
1022 gx 12.5 cet 0239-0640 06
1999 dn 10.0 ori $0537-064316$
584 gx 12.0 cet 0131-0651 06
596 gx 12.5 cet 0133-0701 06
2215 oc 08.5 mon 0621-0717 27
615 gx 12.5 cet 0135-0719 06
1084 gx 12.0 eri 0246-0735 06
3115 gx 10.5 sex 1005-0742 37 (c53)
4995 gx 12.0 vir 1310-0750 47
4958 gx 12.0 vir 1306-0801 47
6664 oc 09.0 sct 1837-0813 67
1052 gx 12.0 cet 0241-0815 06
157 gx 11.5 cet 0035-0824 07
7606 gx 11.5 aqr 2319-0830 76
4699 gx 11.0 vir 1249-0840 47
6712 gc 10.0 sct 1853-0842 67
6517 gc 13.0 oph 1802-0858 67
2335 oc 09.5 mon 0707-1005 27
2353 oc 05.0 mon 0715-1018 27
4781 gx 12.0 vir 1254-1032 47
2343 oc 08.0 mon 0708-1039 27
2506 oc 08.5 mon 0800-1047 26 (c54)
7009 pn 08.5 aqr 2104-1122 77 (c55)
4594 gx 09.5 vir 1240-1137 47 (m104)
246 pn 10.9 cet 0047-1207 07 (c56)
7727 gx 11.5 aqr 2340-1218 76
1535 pn 10.5 eri 0414-1244 17
2539 oc 08.0 pup 0810-1250 26

7723 gx 12.0 aqr 2339-1258 76
6171 gc 10.0 oph 1633-1303 56 (m107)
720 gx 11.5 cet 0153-1344 06
2423 oc 07.0 pup 0737-1352 26
3962 gx 12.5 crt 1155-1358 36
6818 pn 10.0 sgr 1944-1409 66
2422 oc 04.5 pup 0737-1430 26 (m47)
2438 pn 11.5 pup 0742-1444 26
4856 gx 11.5 vir 1259-1502 47
2360 oc 09.0 cma 0719-1537 27 (c58)
2811 gx 13.0 hya 0916-1618 26
5054 gx 11.5 vir 1317-1639 47
6645 oc 08.5 sgr 1833-1654 67
2479 oc 09.6 pup 0755-1743 26
6356 gc 09.5 oph 1724-174956
2440 pn 11.5 pup 0742-1813 26
1407 gx 12.0 eri 0340-1834 17
3242 pn 10.0 hya 1025-1838 36 (c59)
2204 oc 09.5 cma 0616-1839 16
4361 pn 11.0 crv 1225-1848 47
4038/9 gx 10.5 crv 1202-1851 36 (c60/61)
2509 oc 09.5 pup 0801-1904 26
4027 gx 12.0 crv 1200-1915 36
6342 gc 11.5 oph 1721-1935 56
6445 pn 13.0 sgr 1749-2001 67
6440 gc 12.0 sgr 1749-2022 67
2421 oc 09.0 pup 0736-2037 26
247 gx 10.0 cet 0047-2045 07 (c62)
5897 gc 09.5 lib 1517-2101 46
908 gx 11.0 cet 0223-2113 06
6568 oc 08.5 sgr 1813-2136 67
$1964 \mathrm{gx} 11.5 \mathrm{lep} 0533-215716$
6583 oc 12.0 sgr 1816-2208 67
6235 gc 11.0 oph 1653-2211 56
6287 gc 11.0 oph 1705-2242 56
2613 gx 11.0 pyx 0833-2258 26
6514 cn 05.0 sgr 1802-2302 67 (m20)
6629 pn 12.0 sgr 1826-2312 67
6642 gc 10.5 sgr 1832-2329 67
6369 pn 14.0 oph 1729-2346 56
6401 gc 07.5 oph 1739-2355 56
2482 oc 08.5 pup 0755-2418 26
6284 gc 10.5 oph 1705-2446 56
2362 oc 04.0 cma 0719-2457 27 (c64)
$6544 \mathrm{gc} 07.5 \mathrm{sgr} 1807-250067$
253 gx 07.5 scl 0048-2518 07 (c65)
6638 gc 10.0 sgr 1831-2530 67
2354 oc 09.0 cma 0714-2544 27
6553 gc 10.0 sgr 1809-2554 67
6144 gc 11.0 sco 1627-2602 56
6355 gc 09.5 oph 1724-262156
5694 gc 11.0 hya 1440-2632 46 (c66)

6293 gc 09.5 oph 1710-2635 56
$288 \mathrm{gc} 09.0 \mathrm{scl} 0053-263507$
6540 oc 14.0 sgr 1806-2749 67
6520 oc 07.5 sgr 1803-2754 67
6316 gc 10.0 oph 1717-2808 56
2527 oc 08.0 pup 0805-2810 26
$613 \mathrm{gx} 11.0 \mathrm{scl} 0134-292406$
6304 gc 10.0 oph 1715-2928 56
2571 oc 07.5 pup 0819-2944 26
2627 oc 08.5 pyx 0837-2957 26
6522 gc 10.5 sgr 1804-3002 67
6528 gc 11.0 sgr 1805-3003 67
2489 oc 09.5 pup $0756-300426$
6451 oc 08.5 sco 1751-3013 58
$6624 \mathrm{gc} 09.5 \mathrm{sgr} 1824-302267$
2567 oc 08.5 pup $0818-303826$
6569 gc 10.5 sgr 1814-3150 67
3621 gx 10.0 hya 1118-3248 36

Tags: astronomy, moon, saber, saber's beads, stargazing
Comments RSS(Really Simple.Syndication) feed

Create a free website or blog at WordPress.com.

C14 Is Awesome!

Saber Does The Stars (Vol 2: the Index Catalog)

C14 (ngc869/884) in Perseus *courtesy of SDSS*
[stephen saber/2004-2024/all contents within are free use and may be reprinted with author/website acknowledgement]
saber does the stars (vol. 1)
http://saberdoesthestars.wordpress.com quick and dirty pov astro-sims
http://www.youtube.com/@saberzastrovidz
concordiem borealis
stephen saber's concordiem borealis contact via messenger
http://www.facebook.com/saberdrumz
lucky ned pepper: steadiest hands in the west
we've all laughed or cringed at inaccurate or impossible telescope/binocular use in movies or tv. the near-omnipresent twin bino fieldstops, ellie watching a meteor shower thru a small mounted scope in contact, costner's first reaction looking thru azeem's makeshift pre-galilean scope in robin hood, ad nauseum.
for me, the most impressive has been lucky ned's handheld sharpshooting talent in the $\mathbf{2 0 1 0}$ remake of true grit. at one point he casually brings a thin 16" spyglass to his eye- with one hand- and from at least a half-mile immediately sights rooster cogburn perfectly centered and focused with a steadiness that would embarrass the rock of gibraltor. ned later twirls the slim tube like a drumstick as an encore.
p.s., two more similar nok-fails within 8 hours of the above post. the rifleman, s1e26: mark brings a binocular to his eyes objectives-first. rather than reshoot the scene, an i-dream-of-jeannie-blink-esque edit magically flips the nok 180deg in his hands. pretty impressive adaptive optics for the old west.
madison's first binocular experience in zombieland: double tap is only forgivable cuz she's just so cute.
by the way, let me know if there's a central online vault for portrayed optics fails. i've got plenty more.
c20: north america nebula naked-eye
despite the 4th mag brightness optimism, caldwell 20 (aka n.g.c. \#7000) requires both very transparent and steady dark skies to reveal itself at 1x. my first naked-eye view of the fuzzy continent was one of many 'double-take' moments from repeated observing; like the first time seeing obvious red in m42, or noticing your shadow being cast by venus' light alone.
mercury is the closest planet to earth
roughly 46% of the time. venus 37%. mars 17%.
mercury is actually the overall closest to all other solar system planets.
most people have been indoctrinated by all those tidy inferior-conjunctions-in-a-row school posters. but that's only one aspect of many.
this information will befuddle or bewilder most civilians.

my first saturn-versary

at the time of this post, saturn is back among the stars where ifirst laid glass on it as a serious observer 29 1/2 years ago- a much more visceral, celebratory milestone for me than the upcoming 30 years in by the calendar. i've felt the same pleasing deja-vu
at 12 and 24 years with jupiter back in its 'original' starfield, and with other rare repeated sky events as well.
if you've had similar experiences, let's just say you've come to the right blog.
> *****
> doublestars: a few laps with porrima (video):
> https://youtu.be/obgptdE5xhk
> that time i broke an a.l. obs program rule

it's generally frowned upon to log targets for multiple programs at once. but hey, how many chances does a yankee get to visit the amazing skies below the equator? link: southern sky program mash-up
girls gone wild in taurus
every 8 years orbital resonance allows us to observe venus pass through the fabulous open cluster messier 45 (aka the pleiades), the brightest of these stars commonly known as the seven sisters. but what most astronomy books exclude is what a bad influence the promiscuous vixen venus has on the prim and proper pleiad ladies. april 2020's slumber party started off innocently enough, with venus tugging ally's braid but soon devolved into pillow fights, jello shots, and trashing hotel rooms, along with smoking cigars and gambling til sunrise. as usual, poor papa atlas ends up spending
the next day bailing his daughters out of jail and nursing hangovers, as venus happily prances along in search of others to partake in another night of hedonism.
just some fractured mythology to keep in mind as we view m45 until april 4th 2028, when visiting venus again turns the stately cluster into a den of iniquities.

toes fetish

that's transits, occultations, eclipses, and shadows. fans can enjoy some quick and dirty astro simulations of these events viewed from other locations in the solar system at http://www.youtube.com/@saberzastrovidz
snl skit: more caldwell! (er, cowbell)
nasa/hubble's 2020 canonization of c-numbers as primary identifiers was certainly cause for celebration among the growing army of gen c-ers.
all that's left is to update the starmap ids in the next printings (or epoch). to this end i've started an email writing campaign to all the publishers, and encourage other caldwell fans to do the same.
to get a head start i've also bought 100 copies of both SA2000 and the Pocket Sky Atlas, whited-out the old ngcs, replaced them with the proper caldwell ids, and am reselling them as used at a discount.
let me know if you run across any saberized collector's editions.
pass them a napkin
sir patrick was obviously a humble deepsky expert as well as a moon guy. consider that he created the caldwell catalogue on a napkin at dinner one night- from memory. 109 objects, constellations, mags, radecs, etc. ask one of the wannabe forum fuzzy 'experts' to attempt the same and all you'll get are sour grapes and tears. sir patrick wasn't just a dso enthusiast, he was a freaking ninja.
messier marathons are about to get a lot easier
well, eventually anyway. we're currently near the farthest northern point of earth's circle of precession.
in about 14,000 years vega will be our brightest 'north star'. for an observer at $45^{\circ} \mathrm{n}$, polaris will scrape the horizon and all of the southern sky will be available- like observing from the equator now.
the nights that a marathon is not possible will be the minority, and our lucky descendants will also enjoy access to the entire caldwell catalogue treasures.

skytimes astro-interview (part one)
st: so how does a deepsky guy end up with a lunar outreach term? i thought you guys hated the moon.
saber: not the skinny ones (moons not guys). and that's when dso hunters hit their stride- during the nights surrounding new moon. i got into the habit of searching for the very young crescents after sunset while waiting for the sky to darken. before long
i'd also be staying on the field til dawn just to chase the oldest slivers up from the horizon.
st: posts to the contrary, you're actually just a passive caldwell fan, and only became an advocate to keep the controversy/outreach going, and to avenge the enthusiastic noobs using c-numbers that were shamed out of forums by trolls not worthy of cleaning the british icon's monocle.
saber: all true.
st: rumor has it you got into observing because a girlfriend didn't want you going to stripclubs after band gigs.
saber: pretty selfish of her wasn't it?
st: so you bought her a $\$ 39$ novelty star after visiting the adler planetarium and ended up spending $\$ 1000$ to hunt it down and see it for yourself.
saber: yup. the kicker is she was so clueless that when we left the adler she was very suprised, having thought we were going to a 'plantarium'. she was expecting to see rows of vegetation.
but then, 30 years ago i never planned on becoming an infamous outreach promoter, either. still, everything i've tried to contribute has been done out of passion- to pay it forward- hopefully making the night sky that much more interesting, accessible, and even fun.

beetlejuice behaving badly

as of mid-feb 2020, i give bellatrix at least a couple tenths of magnitude over betelgeuse.
in the same binocular field bella is slightly more obvious at dusk, and defocusing the pair in a dark sky reveals the difference as well. also, having recovered from my initial shock at the red-orange giant's dramatic dimming,
i now just want it to finally stop teasing us and explode in a historic blaze of glory.
and poor rigel. the jan brady of orion. betelgeuse gets uglied-up by a football to the face- but steals even more attention. (marsha, marsha, marsha!)
enjoying the show,
stephen
[betelgeuse supernova simulation: https://youtu.be/hJPVuSNFxIY]
messier-caldwell (mescal) marathon
for several years i've been adding all the available caldwells in the constellations i'm passing through to my standard messier sequence. there's just too many great treasures within a stone's throw to pass up. many can be hunted during the halftime break or while gambling on m30 as well:
https://messiercaldwellmarathon.blogspot.com

23238 ocasio-cortez
i had a crush on aoc already, but finding out that she also has an asteroid named for her somehow has me even more smitten. i'm not sure why. i don't agree with her views. the rock's name was probably just a diversity gift (she got it for placing 2nd in a high school science fair). still, i feel an increased bond with her because of it. weird, huh? anyway, occasional
cortex's rock is 1.5 miles in diameter and orbits in the main asteroid belt between mars and jupiter.
public forgiveness (cont.)
my friend cozi explains floaters:
https://m.youtube.com/watch?v=TzLvwjfCTBc

galaxy-class drums

now and then the stars align, and my drumming life crosses paths with my passion for the night sky. saber's beads was particularly apt, as the tips of drumsticks are also called beads. another epiphany led me to start adapting cymbal stands as additional binocular mounts when needed. and recently i stumbled upon a variety of kick drum heads featuring galaxies, planets, nebulae, et al. check out visionarydrum.com for my latest kit accoutrements.
caldwells 109- haters 0
it's gotta be tough being an anti-u.k., anti-nasa caldwell hater these days. for the catalogues 25th anniversary, nasa and hubble not only did a major photoshoot of sir patrick's 109 deepsky gems, but have also endorsed the caldwell numbers as their primary ids. would this finally silence the few remaining never-moore-ers and their sad hubris of the defeated?
i sure hope not. the controversy and free publicity has been so instrumental in the catalogue's success that there's no telling how popular it can still become...

the seenines

(in the not too distant future...)
hyperlight communication has given us contact with the people from an exo-planet near c9, the cave nebula. turns out they'd been evesdropping on us and become so enamored with the controversy and that sir patrick had picked their hometown out of billions that the species unanimously voted to rename themselves the 'seenines'.
upon further contact, interstellar war was narrowly averted when a small generationally indoctrinated cult of caldwell deniers- refusing to acknowledge the seenines identity- were instead captured and sentenced to dress as monks and alternate chanting c-numbers with smacking stone tablets against their foreheads.
(yes, the seenines also became big monty python fans.)
ever play guess the radec?
with 2 midsized airports to my north and south, and o'hare a couple hours west, it's rare to see a sky without a contrail. multiple crossing contrails involuntarily remind me of the radec grid, and i'm compelled to start assigning their estimated hours and declinations.
please tell me i'm not the only one.
earth/space porn on chromecast
the beautiful, updating astro-backdrop/slideshow is another nice benefit to blowing-up your mobile's display onto a big screen. (firestick, too.)
highly recommended.

waning interest: hunting the oldest crescent moon
if you're into chasing thin crescents and not taking advantage of the waning slivers, you're missing half of the challenge and rewards. dawn crescents don't get nearly the attention of their dusk counterparts. there is no cultural significance and most of the world is still asleep. this is unfortunate as oldest crescents usually enjoy cleaner, steadier air, and observers already have a jump on dark adaptation. catching the thin horn of luna's limb emerging from the horizon can also be an addictive twist to the dusk event. the still of the night also lends itself to creating a more peaceful and contemplative experience.
double your pleasure, practice, and conquests- support your oldest crescents.

"what does it take to see saturn's rings? i've got 4 k to spend."

4k will certainly buy some jaw-dropping views of the rings. fortunately, run-of-the-mill amazing rings are available for alot less. near opposition, even a 25 x binocular will show a tiny but crisp disc/ring system. it takes about $30 x$ when saturn's out roving around the quadratures. there are even very sporadic reports of naked eye detections of the disc 'bulges'. as for myself, there were several nights surrounding the last ring plane crossing that i was able to detect the ring orientation unaided, as the rings appeared more like hands of a clock than just big ears. but if i had that much to spend on a scope right now i'd get a 9.25hd edge and load it for bear. by the way, it also does a wonderful job on thousands of other night sky treasures. (but mostly on saturn's rings.)

those 5th galilean moons
jupiter occasionally tolerates a paparazzi fieldstar posing as a galilean to snap some pics (after all, many have light that has traveled hundreds of years for the encounter). but mars is welcomed as family, with ganymede even timing a special shadow transit for the red planet's visit: https://youtu.be/JDL_B5MPQ2|
or, those 5th galilean moons
many are ecliptic gladiators, chomping at the bit to challenge the jovian gauntlet of head bouncers in an attempt to cross the system unscathed. 5.5 mag sigma aries pulled it off in august 2023. others are not so lucky: https://flic.kr/p/2oZhB8u

beyond starhopping: sharpshooting

our scopes are shaped like grenade launchers and cannons. finders give us crosshairs and bull's-eyes.
those of us who still enjoy the theme and thrill of the hunt take pride in possessing a quick and accurate target acquisition. so i view starhopping as an initial reconnoiter, not a continuous requirement.
sharpshooters practice what has also been referred to as 'spatial acuity'. basically, this is memorizing simple asterisms formed by nearby visible stars and a finder's red dot (or other) reticle pattern.
many of us reflexively form invisible asterisms on a regular basis. in light-polluted skies we fill in the dimmer stars of the little dipper or corona borealis. sharpshooting is the dso equivalent. an excellent exercise is to see the red dot as the target itself. after completing an observation take another look thru the finder with both eyes open and imagine the red dot completing a simple local star pattern (a triangle, an 'L', etc.). return the scope or binoculars to a neutral start position and aim again to recenter the target solely as the completion of a stellar pattern. using ones lowest power/widest field ep is recommended, as this allows a larger margin for error.
it won't happen overnight, and some are tougher than others, but with repetition this logistic reinforcement will allow the observer to eventually memorize hundreds of otherwise invisible dso positions and skip the celestial pinball routine altogether.
building this personal go-to database of 'lock and load' targets is both a goal and reward of proficient starhopping.
the 110 messier objects are popular sharpshooting targets. becoming intimate with their positions is also essential for those wishing to test their prowess while running the m-cubed (messier marathon from memory).

saturn's teasing tilt

it's a pleasant fiction to imagine saturn's beautiful rings coyly and seductively tilting toward and away from us, slightly by the month and dramatically over a decade. but earth is actually doing the unsung grunt work, carefully pacing itself to fall slightly farther behind saturn in its orbit over the course of each revolution. this allows us the amazing perspective of cycling ring aspects. sorry to dampen anyones fantasy. just something to contemplate at the eyepiece, and while watching the linked vidclip below.
in motion: saturn's northern ring crossing (jan 2009-sep 2010) at
http://www.saberscorpx.vidmeup.com

stoking the embers

outer atmospheres of suns containing a majority of carbon rather than oxygen only allow the red spectrum of their light to reach our eyes.
the beauty of these aptly colored carbon stars has also stopped most of us in our tracks while panning thru the eyepiece.
specifically hunting and comparing these scattered blood diamonds is one of the more forgiving amateur pursuits, as less-than-perfect seeing and altitude often only accentuate their fiery presence.
the astronomical league offers a great program for those ready to start chasing these stellar gems. check it out at https://www.astroleague.org/content/carbon-star-observing-program happy hunting!

outreach: think accessibility
i'm not a recruiter. just offering to share the view.
unless they want to be recruited. then i feel like a drug dealer, as there's possible addiction and withdrawal involved.
in any case, the easier we make it look, the more people feel they can try it themselves.
i try to speak in layman's terms as much as possible, as if there's no new 'language' to learn. not all at once, anyway.
relate that any cloud-free sky will do, and that a modest scope, or even those binoculars in the closet are all they need. i have a couple of 8×40 s that i pass around to supervised groups while they wait in line.
i usually do public outreach under some waxing moon phase and stick with whatever other naked-eye showpieces are available (except by request).
quality/wow factor over quantity. three or four bright targets per group or person is all you really need (i.e., always leave the crowd wanting more).
also, everyone is welcome, whether they want to become an astronomer or astrologer or join the x-files. (those who pathologically correct visitors on every scientific nuance cross the line into 'outpreach', and become the stereotype droll know-it-alls.) i'm not there to criticize how anyone enjoys the stars. in fact, i'm intrigued by the different attractions and curiosities the night sky evokes. the cream will rise to the top without any bias from the host.
beyond that, it's just about making the experience more interesting than academic and enjoying the reactions when that tiny spot of light hits their pupil.
i offer cellphone snaps at the ep for souveniers, and of course have plenty of old astromags/catalogs, dark sky brochures, and local club info available.
most importantly- and this cannot be overstated- use a 5 mw laser pointer to point stuff out. people (kids especially) are entranced by it. many would stay for the light show alone. it is, however, at your discretion whether or not to make the light saber sound while using it.
butch and sundance
i remember only two of us from the club showing up to handle $\mathbf{2 5 0}$ scouts on a sugar-high stampeding in the dark
toward the observing field at once. the ground and scopes were shaking.
quite a daunting experience until the dust settled and the panting troop leaders caught up to them.
caldwell 76: under-appreciated?

At -42° dec, $\mathbf{C 7 6}$ (I call it the 'less-southern jewel box') is just being shy.
If the beautiful bright cluster was circumpolar it would probably die of embarrassment from all the attention.

30×80 barska x-trail revisited

i watched mare crisium spit out aldeberan after an occultation a few nights ago using the barska 30s. very enjoyable. amazing lunar terminator detail, as always. everything about it from my initial review years ago still holds true. still aligned, still mechanically sound, eye relief still useable but wanting.
what i did want to ammend is that the fully-coated barska's color correction may not necessarily be better than that of the fmc 30x orion megaview- but perhaps the brighter
image/decreased contrast may simply render it less noticible. this also implies that, in some cases, vivid CA may be a result of better AR coatings- and that those highly offended by false color might be better appeased by fully-coated or multi-coated models.
just an intuitive thought, but i'll let you be the judge.
the 30 s were not my first experience with vivid vs 'bleached' CA. while comparing four $8 \times 40 \mathrm{~s}$, the fully-coated model also outperformed the other 3 fmc noks on (noticible) CA.
i also still employ and recommend my hi-mag training routine for steadier handheld views thru lower-power binos, whether it's a 30x warm-up before dropping to 15x, or 15x prior to 8-10x sessions.
anyway, the barska $30 x$ is still providing bang long after the buck. versus my 25×100, the barska not only has the adler index (and easily observed) edge in power, but often gets more use due to its smaller grab-n-go size and light weight.
and the $30 x$ stereo views of saturn and luna alone will always be worth the bargain price.
peace, stephen.
saber does the stars at:
tinyurl.com/saberdoesthestarz
tinyurl.com/c14isawesome
forced statutory outreach:
the night i crashed the science fair
my brother's kid had brought home a flyer from school announcing an upcoming science fair and the evening's program; simple demonstrations of basic physics, geology, chemistry, etc. but conspicuous by its absence was any mention of space, astronomy, or even a lousy solar system diorama.
the final rub was that this was taking place at, not just any grade school, but my own hometown childhood almamater- so now it was personal.
politely, but thru gritted teeth, i called the school ready to verbally pound some sense into this blasphemous principal's head...
okay, that's enough dramatics.
just wanted to convey my initial reaction. i was even suprised at how betrayed i felt.
anyway, a semblence of sanity prevailed allowing me to see this as a sad but excellent outreach opportunity.
sure it was december and cold for public outdoor observing, but not even an indoor table display or a few hubble pics?
in the end they were thrilled to have me bring a scope, some noks, and a variety of outreach material.
my $18^{\prime \prime}$ round laminated moon pic was hung at the far end of the gym above the bleachers for observing practice.
but my glp easily stole the show, giving me a big audience of parents and children on which to also impress the dangers and legal ramifications of improper laser use.
it was a fun evening and i was invited back in the spring for a full-blown outdoor event.
being back at my old grade school was an experience in itself. in 6th grade our class held the annual folk festival in the same gym. my group's exhibit- brazil- had also been the most popular, especially with the adults.
ours was the only country serving coffee.

peace, stephen

p.s., speaking of glps, it's extremely difficult to preach responsible laser use when you have the overpowering urge to
make the light saber sound while demonstrating them.
do u observe alone at remote locations?
from a preference standpoint: sure. whenever i'm not sharing views with the public and have time for the drive.
alone with the stars it's a much more intense bonding experience. like it's all on display just for me.
from a danger/life-threatening standpoint: doesn't bother me a bit. there are worse ways to go than with saturn or a favorite dso in the eyepiece.
in fact, it would be my third preferred 'found dead while' scenario. the second would be while behind the drums.
$9 \times 63,10 \times 70,11 \times 80$. there was a time i couldn't get enough wasted light. spraying it like a firehose from the eyepieces of my binoculars during nights on end of gluttony and laughter. after all, i had convinced myself, there was a free and neverending supply. i crashed numerous star parties- aiming the back of my noks at nearby dso observers, and giggling as they flinched from my venomous stray light intruding on their precious night vision. i scoffed criticisms from my elders that there were children starving for light in cloud-covered cambodia. cursing disapproval, several others would often swarm behind me to catch and splash the spewing overflow of photons in their eyes that would otherwise bounce without purpose off the grass and onlooking sheep behind me.
but exit pupil laws were becoming increasingly strict, and my freewheeling cowboy lifestyle finally caught up with me. at one event i was hauled off the field by the national ExP guard and brought before a judge. sentenced to 5 years of hard labor, poor transparency, and a harshly restricted 30×50, i spent many tearful nights repenting the tomfoolery of my youth.
[epilogue: bino exit pupil is often overrated. like aperture, more is always preferable to not having enough. eye placement is less critical with large ExPs as well. iow, don't let an oversized ExP override your enjoyment of the night sky.]
zerbatory blues
after making the 45 minute drive to our blue zone observatory, confining myself to its rectangular slit of heaven would be torture. i spend a good deal of time set up in the surrounding field and rolling around in the grass like a kid in a candy store, too.

Not Another Moon Illusion

Depending on your level of intimacy, most people have experienced up to 3 moon illusions; the size illusion (moon appears larger near the horizon), the depth illusion (moon craters appear as domes aka the 'convex/concave con'), and the terminator illusion (illuminated portion of moon appears offset to direct sun rays).
Another that's followed me thru the years of lunar observing is not so much an illusion as a temporal inconvenience.
The 1.3 seconds it takes for the moon's reflected light to reach us translates to a time-delayed terminator. Whether by inches or yards (cms or meters), the terminator has always advanced farther than what we're seeing from earth. So, while we're slightly ripped-off when the moon is waxing, the waning phases constantly allow us to see features that are actually already in darkness.
Ashen light (earthshine) takes an additional bounce to reach us, so we're actually seeing that area as it appeared 2.6 seconds ago.
The time machine increases dramatically when we view the more distant planets and stars. Saturn's illuminated image, for example, is always roughly 90 minutes old as viewed from earth.
Good stuff to consider next time you see our closest neighbors.

Best Stargazing Locations (U.S.)

Many people are only a 15-20 minute drive away from the most stars they have ever seen. Center your location on the linked map. Green areas are very good. Blue is even better. Gray/Black is as good as it gets.
Plan a short road trip to these areas on a clear, moonless night and soak in the stars.

Show Me My Star

If you'd like a free photo of that honorary star named for a friend or loved one just follow these simple instructions.
(great site. email them to include last crescents before new moon, too!)

LROC Interactive Lunar Map
http://target.|roc.asu.edu/q3/

Total Solar Eclipse Seen From The Moon
https://youtu.be/-jxwxwAnyfQ

Herschel 400 by Declination
Mostly for kicks, but a good reference for target availability and prioritization.
http:www.herschel400bydeclination.blogspot.com

NGC Asterisms/Going Deep For Doubles: The NGC 140
http://www.ngcasterisms.blogspot.com/

Quick And Dirty Binocular Mag Comparisons

Saturn: The Motion Picture

https://youtu.be/Sv_qsDYLH4Y

Lightspeed Distance to the Planets
(from Earth, closest approach):

Mercury 5m10s
Venus 2m15s
Mars 4m20s
Jupiter 35m
Saturn 1h10m
Uranus 2h30m
Neptune 4h10m
(The current distance to Pluto is 4 h 39 m)

First Scope and Eyepieces

Buy the most aperture that is both affordable and portable. Portability should be easy enough that it never becomes an issue or reason not to setup or travel. Some don't think twice about regularly moving 100 lbs of equipment around while some think anything over $\mathbf{2 5}$ lbs is a chore. Vehicle accomodation is a consideration if one plans to travel. Which type of scope is more intuitive to use? Some people naturally take to the operation of a Dob over a Cat and vice-versa. The remaining design pros and cons tend to cancel each other out, and are usually not of crucial importance as both provide amazing views. Goto scopes also provide fine images, but a solid familiarity with the brightest stars and constellations is required to avoid alot of operational frustration.
For eyepiece needs, a 32 mm Plossl, 24-8mm premium zoom, and shorty barlow will be more than enough to cover most useable powers in most scopes. At the same time I recommend collecting and enjoying as many Naglers as possible.

A Mount By Any Other Name

For not being a binocular tripod fan, I sure have enough of them.
When I'm not beating on my drumkit the cymbal stands are all available for duty as sturdy
mounts for my noks. They've occasionally been used at outreach events for multiple viewers as well.
With the cymbal stand boom arms adjusted to the vertical many can extend up to 84". Most are compatible with bino adapters, and the more robust models can easily handle my 100 mm guns.
An alternate mounting choice that often gets overlooked, some music stores carry used boom stands for less than $\$ 50$.

In Praise Of Shallow Ecliptics

Flat ecliptics are no fun for planet viewing or young crescent moon sightings, and often means it's pretty cold outside. But it does give me a better sense of orientation with the Solar system.
In a world where 'north' is usually associated with 'up', it just feels more natural to be looking directly across the planets' orbits with my head and feet more aligned to Sol's north and south poles.
Near the other extreme, viewing a perpendicular ecliptic means I'm standing on the Earth's side and should be falling off the limb and into space.
It's a very Earth-centric bias and one l've been reluctant to share out of shame.
For those who have not experienced this I should have warned you ahead of time not to read this as it may trigger unwarranted vertigo and uneasiness during future obs sessions. My bad.

Caldwell Fever

Stephen Saber

I bagged the Caldwells as an elective project en route to the A.L. Master Observer's award and found them to be a worthy and, in a few cases, challenging DSO refresher course. By request, the following is a jump-start for those in pursuit of Sir Patrick's favorite 109 non-Messier treasures. His concept was a forefather of modern post-Messier collections which has also inspired, often by its notoriety, a slew of the individual lists we see today. For the intermediate observer, this is a very nice warm-up for the Herschel 400 as most of the northern Caldwells also appear in that list. Only 70 targets are required to receive this award, making the program available to observers in either hemisphere (but don't let that stop you from traveling to enjoy the rest). The targets being numbered by declination also gives a much more intuitive idea as to their local altitude and availability. Prefacing the Caldwell catalogue designations below are the host constellation, its mid-point midnight culmination date, and respective Pocket Sky Atlas chart(s). Multiple targets within a constellation are ordered in suggested search sequences. Along with the object type, magnitude, and radec, an additional identifier is included for those using maps not updated with this iconic deepsky database's id.

```
cma / jan02 / psa27
C64 oc 4.1 0719-2457 (ngc2362)
C58 oc 7.2 0718-1537 (ngc2360)
gem / jan05 / psa25
C39 pn 9.9 0729+2055 (ngc2392)
mon / jan05 / psa25, 26
C50 oc 4.8 0632+0452 (ngc2244)
C49 bn -- 0632+0503 (ngc2237-9)
C46 bn 10.0 0639+0844 (ngc2261)
C54 oc 7.6 0800-1047 (ngc2506)
pup / jan08 / psa28
C71 oc 5.8 0752-3833 (ngc2477)
lyn / jan19 / psa23
C25 gc 10.4 0738+3853 (ngc2419)
cnc / jan30 / psa24
C48 gx 10.3 0910+0702 (ngc2775)
```

car / jan31 / psa39, 38

C90 pn 9.7 0921-5819 (ngc2867)
C92 bn 6.2 1044-5952 (ngc3372)
C102 oc 1.9 1043-6424 (ic2602)
C91 oc 3.0 1106-5840 (ngc3532)
vel / feb13 / psa39
C85 oc 2.5 0840-5304 (ic2391)
C79 gc 6.7 1018-4625 (ngc3201)
C74 pn 8.2 1008-4026 (ngc3132)
sex / feb22 / psa37
C53 gx 9.1 1005-0743 (ngc3115)
cha / mar01 / psa30
C109 pn -- 1010-8052 (ngc3195)
leo / mar01 / psa34
C40 gx 10.9 1120+1821 (ngc3626)
hya / mar15 / psa36, 46
C59 pn 8.6 1025-1838 (ngc3242)
C66 gc 10.2 1440-2632 (ngc5694)
cru / mar28 / psa49
C99 dn -- 1253-6300 (coalsack)
C98 oc 6.9 1242-6258 (ngc4609)
C94 oc 4.2 1254-6020 (ngc4755)
cen / mar30 / psa49, 48
C100 oc 4.5 1137-6302 (ic2944)
C97 oc 5.3 1136-6137 (ngc3766)
C80 gc 3.6 1327-4729 (ngc5139)
C83 gx 9.5 1306-4928 (ngc4945)
C77 gx $7.01326-4301$ (ngc5128)
C84 gc 7.6 1346-5122 (ngc5286)
mus / mar30 / psa50
C108 gc 7.8 1226-7240 (ngc4372)
C105 gc 7.3 1300-7053 (ngc4833)
com / apr02 / psa45
C36 gx $9.81236+2758$ (ngc4559)
C38 gx $9.61236+2559$ (ngc4565)
C35 gx 11.4 1300+2759 (ngc4889)
cvn / apr07 / psa43
C26 gx 10.6 1218+3749 (ngc4244)
C32 gx $9.31242+3232$ (ngc4631)
C29 gx 9.8 1311+3703 (ngc5005)
C21 gx 9.4 1228+4406 (ngc4449)
vir / apr11 / psa45
C52 gx 9.3 1249-0548 (ngc4697)
cir / apr30 / psa48
C88 oc 7.9 1506-5536 (ngc5823)
boo / may02 / psa44
C45 gx 10.2 1338+0853 (ngc5248)
nor / may19 / psa58
C89 oc 5.4 1619-5754 (ngc6087)
aps / may21 / psa60
C107 gc 9.3 1626-7212 (ngc6101)
tra / may23 / psa60
C95 oc 5.1 1604-6030 (ngc6025)
dra / may24 / psa31, 51
C3 gx $9.71217+6928$ (ngc4236)
C6 pn 8.8 1759+6638 (ngc6543)
crv / may28 / psa36
C60 gx 11.3 1202-1852 (ngc4038)

```
sco / jun03 / psa58
```

C76 oc 2.6 1654-4148 (ngc6231)
C75 oc 5.8 1626-4040 (ngc6124)
C69 pn 12.8 1714-3706 (ngc6302)
ara / jun10 / psa58
C82 oc 5.2 1641-4846 (ngc6193)
C86 gc 5.6 1741-5340 (ngc6397)
C81 gc 8.1 1726-4825 (ngc6352)
cra / jun30 / psa69
C78 gc 6.6 1808-4342 (ngc6541)
C68 bn 9.7 1902-3657 (ngc6729)
sgr / jul07 / psa66
C57 gx 9.3 1945-1448 (ngc6822)
pav / jul15 / psa70
C93 gc 5.4 1911-5959 (ngc6752)
C101 gx 9.0 1910-6351 (ngc6744)
vul / jul25 / psa62
C37 oc 5.7 2012+2629 (ngc6885)
cyg / jul30 / psa62
C15 pn 9.8 1945+5031 (ngc6826)
C27 bn 7.5 2012+3821 (ngc6888)
C20 bn 6.0 2059+4420 (ngc7000)
C33 sn -- 2056+3143 (ngc6992/5)
C34 sn -- 2046+3043 (ngc6960)
C19 bn 10.0 2154+4716 (ic5146)
del / jul31 / psa64
C47 gc 8.9 2034+0724 (ngc6934)
C42 gc 10.6 2102+1611 (ngc7006)
aqr / aug25 / psa77, 76
C55 pn 8.3 2104-1122 (ngc7009)
C63 pn 6.5 2230-2048 (ngc7293)
lac / aug28 / psa73
C16 oc $6.42215+4953$ (ngc7243)
peg / sep01 / psa74
C30 gx $9.52237+3425$ (ngc7331)
C44 gx $11.02305+1219$ (ngc7479)
C43 gx $10.50003+1609$ (ngc7814)
tuc / sep17 / psa80
C106 gc $4.00024-7205$ (ngc104)
C104 gc 6.6 0103-7051 (ngc362)
scl / sep26 / psa09
C72 gx 8.2 0015-3911 (ngc55)
C70 gx 8.1 0055-3741 (ngc300)
C65 gx 7.1 0048-2517 (ngc253)
cep / sep29 / psa73, 71
C12 gx 9.7 2035+6009 (ngc6946)
C4 bn 6.8 2102+6812 (ngc7023)
C9 bn 7.7 2259+6237 (sh2-155)
C2 pn 11.6 0013+7232 (ngc40)
C1 oc $8.10044+8520$ (ngc188)
cas / oct09 / psa03, 01
C11 bn $7.02321+6112$ (ngc7635)
C18 gx $9.20039+4820$ (ngc185)
C17 gx $9.30033+4830$ (ngc147)
C13 oc $6.40119+5820$ (ngc457)
C10 oc $7.10146+6115$ (ngc663)
C8 oc $9.50130+6318$ (ngc559)
and / oct09 / psa03, 02

C22 pn 9.2 2326+4233 (ngc7662)
C28 oc 5.7 0158+3741 (ngc752)
C23 gx 9.9 0223+4221 (ngc891)
cet / oct15 / psa07
C62 gx 8.9 0047-2046 (ngc247)
C56 pn 8.0 0047-1153 (ngc246)
C51 gx $9.00105+0207$ (ic1613)
for / nov02 / psa06
C67 gx 9.2 0246-3017 (ngc1097)
per / nov07 / psa02
C14 doc 4.3 0220+5708 (ngc869/884)
C24 gx $11.60320+4131$ (ngc1275)
hor / nov10 / psa08
C87 gc 8.4 0312-5513 (ngc1261)
tau / nov30 / psa15
C41 oc $1.00427+1600$ (mel25)
dor / dec17 / psa20, D
C103 bn 1.0 0539-6906 (ngc2070)
col / dec18 / psa18
C73 gc 7.3 0514-4003 (ngc1851)
aur / dec21 / psa12
C31 bn $6.00516+3416$ (ic405)
cam / dec23 / psa11, 21
C5 gx 9.2 0347+6806 (ic342)
C7 gx $8.90737+6536$ (ngc2403)
A.L. Caldwell Program Homepage

Caldwell Telrad Finder Charts

blog under construction
[all contents within are free use and may be reprinted with author/website acknowledgement]

COMING SOON:

The Mess-Cal Marathon
The Last GoTo Convert
Lucky Ned Pepper (And The Steadiest Hands In The West)

Also see:

Recommended Astro Links:
saber, stargazing, caldwell asterisms, astronomy, caldwell catalogue, deepsky, double stars, music, name a star, night sky, outreach, saber's beads, stargazing, stephen saber, you tube

Messier-Caldwell (MesCal) Marathon

by stephen saber
adding the available caldwell showpieces- many within a stone's throw of the messiers- is a rewarding way to keep the marathon dso hunt momentum going while waiting for the sky to turn.
here's a template for 40 deg N , but can easily vary as to when one wishes to jump on and off the messier track, and for latitude dependent target additions/omissions. this route adds 62 caldwells to the 110 messiers. some march caldwells not reaching at least 10deg altitude are not included.

M74, M77, M33, C28, C23
M31, M32, M110, C18, C17
M52, C11, C13
M103, C8, C10, C5, C14
M76, M34, C24, M45

M79, M42, M43, M78, M50, M41
C64, M93, C58, M46, M47, C54
M48, C50, C49, C46
C41, C39, M35, M1, M37, M36, M38
C31, C25, M44, M67, C48
M95, M96, M105, M65, M66
C40, C53, C59

M81, M82, C7, C3
M97, M108, M109, M40, M106
C21, C26, C32, C29
M94, M63, M51, M101, M102

M98, M99, M100, M85, M84, M86
M87, M88, M91, M90, M89
M58, M59, M60, M49, M61

C45, C52, M104, C60, C61
M68, M83, C66
M5, M13, M92, C6, C1
M57, M56, C15, M39, C20, M29
C27, C33, C34, C37, M27, M71
M12, M10, M14, M107, M9, M4
M80, M62, M19

M11, M26, M16, M17, M18, M24
M25, M23, M21, M20, M8, M28
M22

C75, C76, C69, M6, M7
M69, M70, M54, M55, M75
C57, C47, C42, M15, M2
M72, M73, C55
*C30, C19, C16, C22
C12, C4, C9, C2, M30
*this pre-m30 target sequence is ordered to allow cepheus maximum altitude while moving away from the approaching morning twilight dome.
as with the m-cubed, hardcore mescal marathon hunters wanting to preserve maximum nightvision and spend more time observing should practice memorizing and sharpshooting this list in smaller groups throughout the year.

Matt Wedel's appreciated follow-up: Concordiem Australis

[c38/the needle galaxy courtesy of sdss]

No comments:
saber, stargazing, caldwell astronomy, binoculars, caldwell catalogue, clusters, dso, galaxy, nebula, observing lists, stargazing, telescope

Saber Does The Stars: Astro Sims Gallery

Celestia planetarium software has saved my sanity on countless cloudy nights for both its accurate real-time sky display, and as a creative outlet to observe rare and/or currently spaceflight-limited events by virtually traveling across time and space. The vids and clips to this gallery and more can be found at http://www.youtube.com/@saberzastrovidz . Enjoy!
[all images are free use with author/website acknowledgement]

saber, stargazing, caldwell ally's braid, astronomical league, astronomy, caldwell catalog, concordiem borealis, deepsky, drummers, eclipse, messier marathon, messier marathon from memory, messiercaldwell marathon, moon, musicians, outreach

2023-2024 Lunar X Timings

2023 Jan 290056 UT
Feb 271521 UT
Mar 290518 UT
Apr 271827 UT
May 270644 UT
Jun 251816 UT
Jul 250520 UT
Aug 231619 UT
Sep 220338 UT
Oct 211540 UT
Nov 200437 UT
Dec 191831 UT

2024 Jan 180905 UT
Feb 162349 UT
Mar 171410 UT
Apr 160341 UT
May 151613 UT
Jun 140349 UT
Jul 131448 UT
Aug 120131 UT
Sep 101229 UT
Oct 100009 UT
Nov 081249 UT
Dec 080236 UT
timings courtesy of Dana Thompson
photo credit: frostydew.org

UT to local time conversion:
www.timebie.com/timelocal/universal.php
saber does the stars at:
http://saberdoesthestars.wordpress.com
http://c14isawesome.blogspot.com
http://www.youtube.com/saberzastrovidz
all contents within are free use with author/website acknowledgement

No comments: ME日 M (
saber, stargazing, caldwell astrology, astronomy, binoculars, clinton, lunar x, moon, obama, saber's beads, stargazing, stephen saber, telescopes, trump

Concordiem Borealis

by Stephen Saber

This collection of DSOs and doublestars unifies the Astronomical League's Messier, Bino Deepsky, Caldwell (the 76 most northern), and Double Star targets as well as the RASC's 110 Finest NGC Objects (90 of which are Herschel 400s). Three doubles I couldn't live without are also included. Designed with those tackling the Observe Programs in mind, the overlapping entries have been omitted- leaving a treasure chest of 400+ gems for northern observers.
Grouped by constellation, the basic data and corresponding Pocket Sky Atlas chart follow each entry.

```
ANDROMEDA
obj/type/mag/radec/psa
M31 GX 3.5 0043+4119 03
M32 GX 8.2 0043+4055 03
M110 GX 8.0 0041+4144 03
C28/NGC752 OC 5.7 0158+3743 02
C23/NGC891 GX 10.0 0223+4223 02
C22/NGC7662 PN 9.0 2326+4236 03
gammaAnd DS 2.3 0204+4222 02
```

AQUARIUS
M2 GC 6.5 2134-0047 77
M72 GC 9.4 2054-1230 77
M73 AS 9.0 2059-1236 77
C55/NGC7009 PN 8.0 2105-1120 77
C63/NGC7293 PN 7.5 2230-2046 76
zetaAqr DS 4.3 2229-0001 77
94 Aqr DS 5.3 2319-1328 76
AQUILA
NGC6709 OC 6.7 1852+1022 65
NGC6781 PN 12.0 1919+0634 65
57 AqI DS 5.8 1955-0814 66
ARIES
NGC772 GX $10.30200+190304$
gammaAri DS $4.80154+191804$
lambdaAri DS $4.90158+233604$

AURIGA
M36 OC $6.00537+340812$
M37 OC $5.60553+323312$
M38 OC $6.40529+355012$
NGC1893 OC $7.50523+332412$
NGC1907 OC $8.20529+351912$
NGC1931 CN $11.30532+341512$
NGC2281 OC $5.40650+410323$
C31/IC405 EN - 0517+3416 12
thetaAur DS 2.7 0600+3713 12
BOOTES
C45/NGC5248 GX $10.21338+085144$
NGC5466 GC $9.11406+283044$
deltaBoo DS 3.5 1516+3319 42
iotaBoo DS 4.9 1416+5122 42
kappaBoo DS 4.6 1414+5147 42 epsilonBoo DS $2.51445+270444$ muBoo DS 4.3 1525+3723 42 piBoo DS 4.9 1441+1625 44 xiBoo DS 4.7 1451+1906 44

CAMELOPARDALIS
NGC1501 PN $13.00408+605613$
C7/NGC2403 GX $8.40738+653521$
NGC2655 GX 10.1 0857+7811 21
C5/IC342 GX 9.1 0348+6807 11
Stock23 OC $6.50316+600211$
Kemble1 OC 4.0 0358+6306 11
1 Cam DS 5.7 0432+5355 12
32 Cam DS 5.3 1249+8325 21
CANCER
M44 OC 3.1 0841+1957 24
M67 OC $6.90851+114724$
C48/NGC2775 GX 10.3 0911+0700 24
iotaCnc DS 4.2 0847+2846 24
zetaCnc DS $5.50812+173924$
CANES VENATICI
M3 GC 6.3 1343+2821 44
M51 GX $8.41330+471043$
M63 GX 8.6 1316+4159 43
M94 GX 8.2 1251+4104 43
M106 GX 8.3 1219+4715 43
NGC4111 GX 10.8 1208+4301 43
NGC4214 GX 9.7 1216+3617 43
C26/NGC4244 GX $10.21218+374643$
C21/NGC4449 GX $9.41229+440343$
NGC4490 GX 9.8 1231+4135 43
C32/NGC4631 GX 9.3 1242+3229 43
NGC4656/7 GX 10.4 1244+3207 43
C29/NGC5005 GX 9.8 1311+3700 43
NGC5033 GX 10.1 1314+3633 43
alphaCVn DS 2.9 1256+3819 43
CANIS MAJOR
M41 OC 4.5 0646-2045 27
NGC2359 EN 11.0 0719-1313 27
C58/NGC2360 OC 7.2 0718-1538 27
C64/NGC2362 OC 4.1 0719-2457 27 epsilonCMa DS 1.5 0659-2858 27 h3945 DS 5.0 0717-2318 27

CAPRICORNUS

M30 GC 7.5 2141-2309 77
alphaCap DS 3.6 2018-1233 66
betaCap DS 3.4 2021-1447 66
CASSIOPEIA
M52 OC 6.9 2325+6138 03
M103 OC $7.40134+604403$
NGC129 OC $6.50030+601703$
C17/NGC147 GX $9.30034+483303$
C18/NGC185 GX $9.20039+482303$
NGC281 EN $7.00053+564003$
C13/NGC457 OC $6.40120+582303$

C8/NGC559 OC $9.50130+632001$ C10/NGC663 OC $7.10147+611701$ C11/NGC7635 EN - 2321+6115 71 NGC7789 OC 6.7 2357+5647 03 IC289 PN $13.10311+612102$ Cr463 OC 5.7 0148+7157 01 Stock2 OC $4.40215+591601$
Mark6 OC 7.1 0230+6039 01
Mel15 OC $6.50233+612701$ Tr3 OC $7.00312+631501$ etaCas DS 3.4 0049+5749 03 iotaCas DS 4.0 0229+6724 01 sigmaCas DS $5.02359+554503$

CEPHEUS
C2/NGC40 PN $11.00013+723571$
C1/NGC188 OC 8.1 0045+8523 71
NGC6939 OC $7.82032+604061$
C12/NGC6946 GX 8.9 2035+6011 61
C4/NGC7023 CN 7.0 2101+6812 71
NGC7129 RN 12.0 2141+6608 71
NGC7160 OC 6.1 2154+6238 71
NGC7235 OC $7.72213+571971$
C9/Sh2-155 DN - 2257+6237 71
betaCep DS 3.2 2129+7034 71
deltaCep DS 3.9 2229+5825 71
xiCep DS 4.4 2204+6438 71
Struve 2816 DS 5.6 2139+5729 73
CETUS
M77 GX $8.80243+000104$
C56/NGC246 PN 8.0 0047-1150 07
C62/NGC247 GX $8.90047-204307$
NGC936 GX 10.1 0228-0107 04
C51/IC1613 GX $9.30105+020705$
gammaCet DS 3.5 0243+0314 04
COLUMBA
C73/NGC1851 GC 7.3 0514-4003 18
COMA BERENICES
M53 GC 7.7 1313+1807 45
M64 GX 8.5 1257+2138 45
M85 GX 9.2 1226+1808 C
M88 GX 9.5 1232+1422 C
M91 GX 10.2 1236+1427 C
M98 GX 10.1 1214+1451 C
M99 GX 9.8 1219+1422 C
M100 GX $9.41223+1546$ C
NGC4274 GX 10.4 1220+2934 45
NGC4414 GX 10.3 1227+3110 45
NGC4494 GX 9.9 1232+2544 45
C36/NGC4559 GX 9.9 1236+2755 45
C38/NGC4565 GX 9.6 1237+2556 45
NGC4725 GX 9.2 1251+2527 45
C35/NGC4889 GX 11.4 1300+2755 45
Mel 111 OC $1.81225+260045$
24 Com DS $5.21235+182345$
CORONA AUSTRALIS
C68/NGC6729 EN 9.7 1902-3657 69
CORONA BOREALIS
zetaCrB DS 5.1 1539+3638 53
sigmaCrB DS 5.6 1615+3352 53
CORVUS
C60/NGC4038 GX 10.7 1202-1855 47
C61/NGC4039 GX 13.0 1202-1856 47
NGC4361 PN 10.0 1225-1851 47
deltaCrv DS 3.0 1230-1631 47
CYGNUS
M29 OC 6.6 2024+3834 62
M39 OC 4.6 2132+4828 62
NGC6819 OC $7.31942+401262$
C15/NGC6826 PN 10.0 1945+5032 62

C27/NGC6888 EN 7.5 2012+3822 62
NGC6910 OC $7.42023+404962$
C34/NGC6960 SN - 2046+3045 62
C33/NGC6992-5 SN - 2057+3145 62
C20/NGC7000 EN 6.0 2059+4422 62
NGC7027 PN $10.02107+421662$
NGC7063 OC $7.02125+363262$
C19/IC5146 CN 10.0 2154+4718 73
betaCyg DS 3.1 1931+2758 62
31 Cyg DS 3.8 2014+4644 62
61 Cyg DS 5.2 2107+3845 62
DELPHINUS
C47/NGC6934 GC 8.7 2034+0724 64
C42/NGC7006 GC 10.6 2102+1611 64
gammaDel DS 4.5 2047+1607 64
DRACO
M102 GX 10.0 1507+5544 42 C3/NGC4236 GX 9.7 1217+6928 41
NGC5907 GX $10.41516+561942$
NGC6503 GX 10.2 1749+7009 61
C6/NGC6543 PN $8.81759+663851$
muDra DS 5.7 1705+5428 52
nuDra DS 4.9 1732+5511 52
psiDra DS 4.9 1742+7209 51
16/17 Dra DS 5.4 1636+5255 52
40/41 Dra DS 5.7 1800+8000 51
ERIDANIS
NGC1232 GX 9.9 0310-2035 17
NGC1535 PN 10.4 0414-1244 17
32 Eri DS 4.8 0354-0257 17
55 Eri DS 6.7 0444-0848 16
FORNAX
C67/NGC1097 GX 9.2 0246-3017 06
GEMINI
M35 OC 5.1 0609+2420 25
NGC2158 OC $8.60608+240625$
NGC2371/2 PN $11.00726+292925$
C39/NGC2392 PN $9.90729+205525$
alphaGem DS $1.90735+315325$
deltaGem DS $3.50720+215925$
HERCULES
M13 GC 5.9 1642+3627 52
M92 GC 6.5 1717+4307 52
NGC6210 PN 9.0 1645+2348 54
alphaHer DS 3.5 1715+1423 52
deltaHer DS 3.1 1715+2450 54
kappaHer DS 5.3 1608+1703 55
rhoHer DS 4.6 1724+3709 52
95 Her DS 5.0 1802+2136 54
HYDRA
M48 OC 5.8 0814-0549 26
M68 GC 8.2 1240-2648 47
M83 GX 7.6 1337-2954 47
C59/NGC3242 PN 8.6 1025-1838 37
C66/NGC5694 GC 10.2 1440-2632 46
N Hya DS 5.8 1132-2916 36
LACERTA
NGC7209 OC 7.7 2205+4630 73
C16/NGC7243 OC $6.42215+495373$
8 Lac DS 5.7 2236+3938 72
LEO
M65 GX 9.3 1119+1302 34
M66 GX 9.0 1121+1256 34
M95 GX 9.7 1044+1139 34
M96 GX 9.2 1047+1146 34
M105 GX 9.3 1048+1232 34
NGC2903 GX 8.9 0933+2128 35
NGC3384 GX $10.01049+123534$

NGC3521 GX 8.9 1106-0005 34
NGC3607 GX 10.0 1117+1800 34 C40/NGC3626 GX $10.91121+181834$
NGC3628 GX 9.5 1121+1333 34 alphaLeo DS 1.4 1008+1158 35 gammaLeo DS 2.2 1020+1951 35 54 Leo DS 4.5 1056+2445 34

LEO MINOR
NGC3003 GX 11.7 0949+3323 33
NGC3344 GX 10.0 1044+2452 35
NGC3432 GX 11.3 1023+3634 33
LEPUS
M79 GC $8.00525-243316$
HR1944 DS 6.4 0539-1751 16
gammaLep DS 3.8 0545-2227 16
LIBRA
NGC5897 GC 8.6 1518-2103 57
alphaLib DS 2.8 1451-1602 57
LYNX
C25/NGC2419 GC 10.4 0739+3852 23
NGC2683 GX 9.7 0853+3323 22
12 Lyn DS $5.40646+592723$
19 Lyn DS $5.60723+551723$
38 Lyn DS 3.9 0919+3648 22
LYRA
M56 GC 8.3 1917+3012 63
M57 PN $9.01854+330363$
betaLyr DS 3.4 1850+3322 63
zetaLyr DS 4.3 1845+3736 63
epsilonLyr DS 5.0 1844+3940 63
Struve 2404 DS 6.9 1851+1059 63
O.Struve 525 DS $6.01855+335863$

MONOCEROS
M50 OC 5.9 0704-0821 27
NGC2232 OC 3.9 0627-0445 27
C50/NGC2244 OC 4.8 0633+0452 25
NGC2251 OC 7.3 0635+0822 25
C46/NGC2261 EN $10.00639+084425$
NGC2264 CN 3.9 0642+0952 25
C49/NGC2237+ EN - 0631+0503 25
NGC2301 OC 6.0 0652+0027 25
NGC2343 OC 6.7 0709-1040 27
C54/NGC2506 OC 7.6 0801-1048 26
betaMon DS 4.7 0629-0702 27
epsilonMon DS 4.5 0624+0436 25
OPHIUCHUS
M9 GC 7.9 1720-1831 56
M10 GC 6.6 1658-0126 56
M12 GC 6.6 1648-0158 56
M14 GC 7.6 1738-0315 56
M19 GC 7.2 1703-2617 56
M62 GC 6.6 1702-3008 56
M107 GC 8.1 1633-1304 56
NGC6369 PN 13.0 1730-2346 56
NGC6572 PN 9.0 1812+0651 65
NGC6633 OC $4.61828+063465$
IC4665 OC 4.2 1746+0543 54
omicronOph DS 5.4 1718-2417 56
36 Oph DS 5.1 1715-2636 56
70 Oph DS 4.2 1806+0230 65
ORION
M42 EN 3.9 0536-0527 16
M43 EN 9.0 0536-0516 16
M78 RN $8.00547+000316$
NGC1662 OC 6.4 0449+1057 14
NGC1788 RN - 0507-0320 16
NGC1973+ EN - 0535-0444 B
NGC1981 OC 4.6 0536-0426 16
NGC2022 PN $12.00543+090514$

NGC2024 EN — 0542-0151 14 NGC2169 OC 5.9 0609+1357 14 NGC2194 OC $8.50614+124814$ betaOri DS 0.1 0515-0812 16 deltaOri DS 2.2 0532-0018 16 theta1 Ori DS $5.40536-0523$ B theta2 Ori DS $5.20536-0525$ B iotaOri DS 2.8 0535-0555 B lambdaOri DS 3.6 0535+0956 14 sigmaOri DS 4.0 0539-0236 16 zetaOri DS 1.9 0541-0157 16 Struve 747 DS 4.8 0535-0600 B

PEGASUS
M15 GC 6.4 2130+1212 75 C30/NGC7331 GX 9.5 2237+3427 72 C44/NGC7479 GX $11.02305+122274$ C43/NGC7814 GX 10.5 0004+1612 74 epsilonPeg DS 2.4 2144+0952 75

PERSEUS

M34 OC $5.20243+424913$
M76 PN $12.00143+513613$
C14/NGC869 OC 4.0 0220+5711 13
C14/NGC884 OC $4.00223+570913$
NGC1023 GX $9.50241+390613$ C24/NGC1275 GX $11.60320+413313$ NGC1342 OC $6.70332+372213$
NGC1491 EN - 0404+5120 13
NGC1528 OC $6.40416+511513$
NGC1582 OC $7.00433+435212$
Tr2 OC 5.9 0237+5559 13
Mel20 OC $1.20322+490013$
etaPer DS 3.8 0251+5554 13
Struve 331 DS $5.30301+522113$
PISCES
M74 GX $9.20137+154904$ alphaPsc DS $4.20202+024604$ zetaPsc DS $5.60113+073505$ psi1 Psc DS $5.60106+212805$ 65 Psc DS 6.3 0050+2743 05

PUPPIS
M46 OC 6.1 0742-1450 27
M47 OC 4.4 0737-1431 27
M93 OC 6.2 0745-2353 26
NGC2440 PN 11.0 0742-1814 26
C71/NGC2477 OC 5.8 0753-3834 28
NGC2527 OC 6.5 0806-2811 28
NGC2539 OC 6.5 0811-1251 26
NGC2571 OC 7.0 0819-2946 28
kappaPup DS 4.5 0739-2648 27
SAGITTA
M71 GC 8.3 1954+1848 64
SAGITTARIUS
M8 CN 5.8 1804-2423 67
M17 EN 6.0 1821-1611 67
M18 OC 6.9 1820-1708 67
M20 EN 6.3 1803-2302 67
M21 OC 5.9 1805-2635 67
M22 GC 5.1 1837-2354 67
M23 OC 5.5 1757-1901 67
M24 SC 4.6 1817-1850 67
M25 OC 4.6 1832-1915 67
M28 GC 6.9 1825-2452 67
M54 GC 7.7 1856-3028 67
M55 GC 7.0 1940-3057 66
M69 GC 7.7 1832-3221 67
M70 GC 8.1 1844-3217 67
M75 GC 8.6 2007-2154 66
NGC6445 PN 13.0 1750-2001 67
NGC6520 OC 8.0 1804-2754 67
NGC6716 OC 6.9 1855-1952 67

NGC6818 PN 10.0 1944-1408 66
C57/NGC6822 GX 9.0 1945-1447 66

SCORPIUS

M4 GC 5.9 1624-2633 56
M6 OC 4.2 1741-3213 58
M7 OC 3.3 1754-3449 58
M80 GC 7.2 1617-2300 56
C75/NGC6124 OC 5.8 1626-4041 58
C76/NGC6231 OC 2.6 1654-4148 58
C69/NGC6302 PN 13.0 1714-3707 58
betaSco DS 2.6 1605-194856
nuSco DS 4.3 1612-1928 56
xiSco DS 4.8 1604-1122 56
Struve 1999 DS 7.4 1604-1127 56
SCULPTOR
C72/NGC55 GX 8.0 0015-3908 78
C65/NGC253 GX 7.1 0048-2514 07
C70/NGC300 GX 9.0 0055-3738 09
SCUTUM
M11 OC 5.8 1852-0615 67
M26 OC 8.0 1846-0923 67
NGC6712 GC 8.2 1854-0841 67
SERPENS CAPUT
M5 GC 5.8 1519+0203 55
deltaSer DS 4.2 1535+1032 55
SERPENS CAUDA
M16 CN 6.0 1819-1347 67
IC4756 OC 4.6 1839+0527 65
thetaSer DS 4.5 1856+0412 65
SEXTANS
C53/NGC3115 GX 9.2 1006-0745 37
TAURUS
M1 SN $8.40535+220114$
M45 OC 1.2 0047+2407 15
NGC1514 PN $10.00410+304815$
NGC1647 OC 6.4 OC 0446+1905 15
NGC1746 OC $6.00504+235014$
NGC1807 OC $7.00511+163314$
NGC1817 OC $7.70513+164314$
C41/Mel25 OC $1.00427+160015$
chiTau DS 5.5 0423+2538 15
118 Tau DS $5.80529+250914$
TRIANGULUM
M33 GX $5.70134+304102$
iotaTri DS 5.3 0212+3018 02
URSA MAJOR
M40 DS 9.0 1222+5805 32
M81 GX 6.9 0956+6902 31
M82 GX $8.40956+693931$
M97 PN 11.2 1115+548 32
M101 GX $7.71403+541942$
M108 GX 10.1 1112+5537 32
M109 GX 9.8 1158+5320 32
NGC2841 GX $9.30923+505633$
NGC3079 GX 10.6 1003+5539 33
NGC3184 GX 9.8 1019+4123 33
NGC3877 GX $12.01147+472732$
NGC3941 GX $11.01153+365632$
NGC4026 GX $12.01200+505532$
NGC4088 GX $10.51206+503032$
NGC4157 GX $12.01212+502632$
NGC4605 GX $11.01240+613432$
zetaUMa DS 2.3 1324+5456 32
URSA MINOR
alphaUMi DS 2.0 0232+8916 01
VELA

VIRGO
M49 GX 8.4 1230＋0757 C
M58 GX $9.81238+1146$ C
M59 GX $9.81242+1136$ C
M60 GX $8.81244+1130$ C
M61 GX 9.7 1222＋0425 45
M84 GX 9.3 1226＋1250 C
M86 GX 9.2 1227＋1254 C
M87 GX $8.61231+1221$ C
M89 GX $9.81236+1230$ C
M90 GX 9.5 1237＋1307 C
M104 GX 8.3 1240－1140 47
NGC4216 GX $10.01216+1306$ C
NGC4388 GX 11.1 1226＋1237 C
NGC4438 GX 10．1 1228＋1258 C
NGC4517 GX $10.51233+000445$
NGC4526 GX $9.61234+0739$ C
NGC4535 GX $9.81235+0809$ C
NGC4567／8 GX 11．3 1237＋1112 C
C52／NGC4697 GX 9．3 1249－0551 47
NGC4699 GX 9．6 1249－0843 47
NGC4762 GX 10．2 1253＋1111 C
NGC5746 GX 10.6 1445＋0155 44
gammaVir DS 3.5 1242－0127 45
VULPECULA
M27 PN 8.1 2000＋2244 64
NGC6802 OC 8.8 1931＋2017 64
NGC6823 CN 7.1 1943＋2319 64
C37／NGC6882－5 OC 6.0 2012＋2630 64
NGC6940 OC $6.32035+282064$
Cr 399 OC 3.6 1925＋2011 64
＊＊＊＊＊
c76（the northern jewelbox）in scorpius courtesy of sdss
saber does the stars vol 2：the index catalog tinyurl．com／saberdoesthestars－vol2
all contents within are free use with author／website acknowledgement

No comments：

MEヒ戸の

saber，stargazing，caldwell astronomical league，concordiem borealis，deepsky，outreach，saber does the stars，saber＇s beads，stephen saber

Saber＇s Beads：Evolution

Saber＇s Beads：Evolution

by J．Sorenson
＂The broken arc of lights eclipse contact resemblance peaked in deep twilight with the infant crescent moon hanging 5° above the horizon on a steep ecliptic at a solar elongation of 12.2° ．By this time I was fully immersed in the imagery of a total solar eclipse－as if in the next few moments I would either be basking in our sun＇s corona or forced to turn away from its glare．Low altitude scintillation added a surreal dynamic to the experience．＂－Stephen Saber（May 2006）
After his related comment on this young moon sighting，the described visual aspect was almost immediately dubbed＂Saber＇s Beads＂by his peers，and gained popular use by other lunar observers and websites．
The term has since continued to virally spread to other cultural venues as well，including：

Existential：SouledOut（2007）
Saber＇s Beads is represented as symbolic of increased perspective and open－mindedness．

Life Experience：Blogger（2009）The author＇s blog titled Saber＇s Beads documents her own personal uplifting experiences as＇staggered brightness peaks＇along life＇s journey．

Literature／Fiction：Cailyn Vature＇s＇Raven＇（2009）Saber＇s Beads initiate a fabled window of time surrounding new moon that allows those souls in limbo to return to earth．

Music: Sophie Hutchings (2012)
Saber's Beads is released as an instrumental classical piano track appearing on her album 'Night Sky'.

Nature: (Faulkner 2014) A breed of flower is officially catalogued as Saber's Beads due to characteristic random bright patches at the petal tips.

Gaming: Perfect World (2015)
Saber's Beads is introduced as a powerful defensive weapon sought to be collected during play.

Sports: Horse Racing/TabGold (2015) The 3-year old racehorse, named Saber's Beads, takes 3rd place in his first appearance at Scottsville Downs.

Jewelry: Lunerias Luneras (2016)
The Saber's Beads necklace is introduced, featuring detached points of brightness and color.

Music: Malakai (2018) Dance/electronic track Saber's Beads released from the album Soros

Art/Literature: (2018) Graphic novel Saber's Beads created by artist/writer Melody Borg.

Quotable/Meme (YouQuote.in): Saber's Beads mentioned in inspirational quote by writer Incognito.
Baby Names (Reddit): Young couple notes naming their firstborn Saber after the rare lunar phenomenon.

Art/Paintings: (2019) French artist Joyce Billet creates the Saber's Beads collection of oil paintings inspired by the 'duality between dark and light alluding to an eclipse' and 'the relationship between nature and humanity.

Even with Saber's passionate forte for popularizing the night sky, this level of 'outreach gone wild' was an unexpected bonus, and he mentions being especially pleased that the epiphany-related term had not remained confined to the world of astronomy.
For a chance to experience the astronomical Saber's Beads the equipment requirements are as simple as the sighting conditions are serendipitous. Standard binoculars provide the minimum magnification. However, the necessary logistics and sky conditions to follow an extremely young lunar crescent down to a clear horizon (or an extremely old crescent up from the horizon) while still in deep twilight are few and far between. But for those who persevere Saber's Beads remains a beautiful sight not to be missed.
[reprinted with permission/J. Sorenson, KSCA Meridian June 2019]

Saber＇s Beads（raw image credit：maurice collins／ltvt
http：／／saberdoesthestars．wordpress．com
http：／／c14isawesome．blogspot．com
http：／／saberscorpx．vidmeup．com

No comments：

saber，stargazing，caldwell astrology，astronomy，moon，outreach，saber＇s beads，stargazing，stephen saber

C14 Is Awesome！

One Foot In The Trenches，One Fist In The Stars

Stephen Saber of Menace is a self－described journeyman bar band banger from Rock Island， Illinois．He＇s been armed with Scorpion Percussion 2B drumsticks onstage for many years of his heavy－handed metal drumming，noting that＂they＇re consistently a great combination of balance and durability＂．
In his free time on a clear night，Saber can also be found unwinding under the stars with a telescope or binoculars．Having earned a Master Observer award from the Astronomical League，he is also namesake to the lunar phenomenon know as Saber＇s Beads．
Coincidentally，his favorite constellation is Scorpius－the Scorpion．
Thanks to Saber for his continued support in the Midwest．

Visit Scorpion Percussion at
https：／／www．scorpionpercussion．com／

［reprinted from

https：／／www．facebook．com／saberdrumz ］

No comments：

MEヒ戸の

saber，stargazing，caldwell ally＇s braid，asterisms，concordiem borealis，deepsky，drummers，m－ cubed，mescal，messier marathon from memory，messier－caldwell marathon，musicians，saber＇s beads，saberscorpx

Messier Marathon from Memory（M－Cubed）

by Stephen Saber
Running the M－Cubed is an advanced approach to the Messier Marathon requiring the observer to already be very familiar with each target＇s position．
Sharpshooting the Messiers for a few seasons before even hearing of the M－Cubed，my approach included committing the entire sequence to memory．This approach allows more time spent observing while maintaining maximum dark adaptation．
For easier memorization the 110 Messier objects are broken down into 10 groups，each corresponding to a specific area of the sky．Numeric patterns are added whenever possible while still following the basic search sequence．
I have used this technique to manually hunt and observe all 110 Messiers from Arizona，and 109 on four occasions from $41^{\circ} \mathrm{N}$ latitude without the aid of starcharts，notes，or red light．Very liberating． Begin by memorizing the first string of numbers while visualizing their positions．As you become comfortable with these，repeat the process for the subsequent groups．

Evening Rush
$74,77,33,31,32,110,52,103,76,34,45$
Southern Comfort
$79,42,43,78,50,41,93,46,47,48$
Early Ecliptic
1，35，37，36，38，44，67，95，96，105，65， 66

The Big Bear
81, 82, 97, 108, 109, 40, 106, 94, 63, 51, 101, 102
Downtown Virgo
$98,99,100,85,84,86,87,88,91,90,89$
Virgo and the 'Burbs
$58,59,60,49,61,64,53,3,104,68,83$
Easy East
$5,13,92,57,56,39,29,27,71$
Got Globulars?
12, 10, 14, 107, 9, 4, 80, 62, 19
Cruising the Milky Way
$11,26,16,17,18,24,25,23,21,20,8,28,22$

Homestretch
$6,7,69,70,54,55,75,15,2,72,73,30$
With repetition the individual strings will eventually link together as the entire search sequence is committed to memory. (note: the strings' titles are by no means written in stone, and can be substituted for any phrase the observer finds mnemonically helpful. also, the classic m-cubed only requires memorization of the target positions- not the search sequence.)

I encourage those interested in attempting this method to practice with mini-M-Cubes throughout the year, going over each leg in sections.
Many end up suprised by the number of object locations that are already familiar outside of their chart and starhopping routine.
[Left Ascension, Feb '04]

saber does the stars (vol 2: the index catalog)
www.c14isawesome.blogspot.com
www.saberdoesthestars.wordpress.com
seds messier marathon homepage http://messier.seds.org/xtra/marathon/marathon.html
all contents within are free use with author/website acknowledgement
m1 (the crab nebula) courtesy of seds

No comments:
MEヒ円
saber, stargazing, caldwell astronomy, deepsky, m-cubed, messier marathon, saber does the stars, saber's beads, stargazing, stephen saber

sitting in plato: earth viewed from the moon

simulated pics of earth as seen from the lunar crater plato *created with celestia*

earth passes the hyades (caldwell 41)
earth occults saturn

earth occults mars
earth occults sol (total solar eclipse)

a total solar eclipse from earth is seen as a shadow transit from the moon
full shadow transit vidclip at http://www.saberscorpx.vidmeup.com

http://c14isawesome.blogspot.com http://saberdoesthestars.wordpress.com

No comments:

MEヒロ

saber, stargazing, caldwell astronomy, binoculars, clinton, earth, hyades, mars, moon, obama, outreach, plato, pleiades, saber does the stars, saber's beads, saturn, stargazing, stephen saber, sun, telescopes, trump

best colorful doublestars in the northern sky

by stephen saber

i'm mostly a deepsky guy, but fortunately i also developed a comparable obsession with planetary, lunar, and doublestar study. this saved my mental health on countless nights of less-than-galaxy-class skies. the abundance of doubles make them a particularly satisfying complement to dso hunting.
the following gems all have secondaries brighter than 8th mag. most are obvious enough not to need position angles to locate. the corresponding pocket sky atlas chart numbers are included. apparent colors can vary depending on sky conditions, contrast, magnitude difference, color sensitivity, and aperture used. enjoy!

```
gamma And 0204+4219 mag 2.3, 5.5 @ sep 9.7" orange and blue (psa 02)
    12 Aqr 2104-0549 5.8,7.5 @ 2.5" yellow and blue (77)
        94 Aqr 2319-1327 5.3, 7.3@ 13.0" red and light blue (76)
        107 Aqr 2346-1840 5.4, 5.7 @ 7.0" white and blue (76)
        1 Ari 0150+2216 5.8,7.1 @ 2.8" white and blue/green (04)
gamma Ari 0154+1917 4.6, 4.7 @ 7.6" orange and blue/green (04)
    lambda Ari 0158+2336 4.8, 7.6 @ 37.5" yellow and blue (04)
```

 30 Ari \(0237+2439\) 6.2, 7.2 @ 39" yellow and blue (04)
 stf872 Aur 0616+3609 6.0, 7.0 @ 11.3" gold and blue (12)
 14 Aur 0515+3241 5.4, 7.5 @ 14.0" yellow and orange (12)
 epsilon Boo 1445+2704 2.5, 4.9 @ 2.8" yellow/orange and blue (53)
xi Boo 1451+1905 4.7, 7.0 @ 6.9" yellow and red (55)
beta Cap 2021-1446 3.2, 6.2 @ 205" orange/yellow and blue (66)
sigma Cas 2359+5545 5.0, 7.1 @ 3.1" blue and blue/green (03)
stf3053 Cas 0003+6606 5.9, 7.3 @ 15.2" orange and white (01)
eta Cas 0049+5749 3.7, 7.5 @ 12.8" yellow, white, red (03)
iota Cas 0229+6724 4.6, 6.9 @ 2.5" white, orange triple (01)
beta Cep 2129+7034 3.2, 7.9 @ 13.3" white and blue (71)
delta Cep 2229+5824 3.9, 6.3 @ 41" orange and blue (71)
stf2816 Cep 2139+5729 5.7, 7.5 @ 11.7" triple with stf2819 (73)
iota Cnc 0847+2845 4.2, 6.6 @ 30" yellow/gold and blue (24)
h3945 CMa 0717-2319 4.8, 6.0 @ 26.8" orange and blue (27)
17 Com 1229+2554 5.4, 6.7 @ 145" white and blue (45)
24 Com $1235+1822$ 5.2, 6.7 @ 20.3" gold and blue (45)
zeta Crv 1221-2218 5.2, 5.9 @ 5.9'
blue and gold (47)
zeta CrB 1539+3638 5.1, 6.0 @ 6.3" white and blue (53)
alpha CVn 1256+3818 2.9, 5.8 @ 19.4" blue and white (32)
beta Cyg 1931+2757 3.1, 5.1 @ 34.4" blue and gold (62)
31 Cyg 2014+4644 3.8, 4.8 @ 107" orange, blue, blue (62)
52 Cyg 2046+3043 4.3, 5.0 @ 6.5" yellow and orange (62)

32 Eri 0354-0257 4.7, 6.2 @ 6.8" yellow and blue/green (17)
38 Gem $\quad 0655+13114.7,7.7$ @ 7.1" white and orange (25)
alpha Her 1715+1423 3.2, 5.4 @ 4.7" orange and blue/green (54)
kappa Her 1609+1703 5.3, 6.5 @ 28" yellow and orange (55) 95 Her 1802+2135 5.0, 5.1 @ 6.3" orange and blue/green (65)
tau1 Hya 0929-0246 4.6, 7.2 @ 66" white and blue (37)
gamma Leo 1020+1950 2.5, 3.5 @ 4.4" yellow and gold (35)
tau Leo 1128+0250 5.2, 7.0 @ 90" yellow and blue (34)
gamma Lep 0545-2227 3.8, 6.5 @ 95" yellow and red (16)
zeta Lyr 1845+3736 4.3, 5.9 @ 44" red and blue/green (63)
shj282 Lyr 1855+3358 6.1, 7.7 @ 45" yellow and blue (63)
beta Mon 0629-0702 4.6, 5.0, 5.4 @ 6.9, 2.8" (27)
epsilon Mon 0624+0435 4.4, 6.7 @ 12.4" red and blue/green (25) omicron Oph 1718-2417 5.2, 6.6 @ 10.3" yellow/orange and blue (56)

70 Oph 1806+0230 4.2, 6.0 @ 4.0" yellow and orange (65)
sigma Ori 0539-0236 4.0, 6.5, 7.5, 10.0 @ 12.9, 11.5, 42" (16) varied shades of blue
eta Ori 0524-0224 3.4, 4.9 @ 1.7" white and blue (16) 42/45 Ori 0536-0450 4.6, 5.2 @ 4.2' blue and yellow (16)
iota Ori 0535-0554 2.8, 7.0 @ 11.3" white and blue/green (16)
alpha Sco 1630-2626 1.0, 5.4 @ 2.6" orange and blue (56)
beta Sco $1605-1948$ 2.6, $4.9 @ 13.7^{\prime \prime}$ with omega sco (56)
zeta Sco 1655-4223 3.6, 4.7 @ 6.5'
orange and blue (58)
theta Tau 0429+1558 3.4, 3.8 @ 5.6'
blue and gold (15)
iota Tri 0212+3018 5.3, 6.9 @ 3.9" yellow and blue (02)

tinyurl.com/saberdoesthestarz

tinyurl.com/c14isawesome
saber, stargazing, caldwell astronomy, binoculars, clinton, double stars, obama, saber does the stars, saber's beads, stargazing, stephen saber, telescopes, trump

Give a Hoot: C13

caldwell 13 in cassiopeia *courtesy of seds*

C13 (aka ngc 457) has many nicknames including the Kachina Doll, E.T., Owl, and Jet Fighter cluster. It's also not a stretch to see it as Sir Patrick sporting his shiny monacle, as it's one of the best nonMessiers in his Caldwell catalogue. At magnitude 6.4, the rich open cluster is also the brightest in Cassiopeia [radec 0119+5820 psa 01]. Of note, C13's brightest sun, phi Cas, is actually an unrelated foreground star that just happens to be in our line of sight to the rest of the 7900 ly distant cluster.

Residing in the northern circumpolar sky has alot to do with its popularity and varied descriptions, and its orientation on ones first view tends to leave the strongest impression (my own first C13 experience happened to catch the cluster in Jet Fighter mode).

Discovering these multiple 'personalities' also speaks to the benefits of observing all of our treasures at different aspects as they rotate during their trek through the sky.
(btw- herschel 400 hunters can also log ngc 436, the more modest 'mouse' cluster, found in c13's neighboring fov either escaping the owl's claws or directly in the jet's gunsights.)
tinyurl.com/saberdoesthestarz
tinyurl.com/c14isawesome
saber, stargazing, caldwell astronomy, C13, caldwell catalogue, herschel 400, ngc 457, outreach, saber's beads, stargazing, stephen saber

addiction

before, the sky was where rain and sunshine came from, and the sun and moon had these eclipse thingies every once in a while. all the stars pretty much looked the same. i rarely took notice of anything up there.
now, my obsession has instilled a vast sense of duty, pride, and shared ownership toward the sky. a part of me is always conscious of it. like i'm responsible for the entire dome's upkeep, inspection, and promotion. i'm aware of the radec grid, moon, planets, bright stars, constellations, and many deepsky treasures' positions above and below the horizon, day or night, indoors or outdoors. ghostly red finder dots are superimposed among the stars, landmarks of repeatedly drawing a bead on the otherwise invisible wonders littering the nightsky.
and these are just the involuntary effects.
all this because i wanted to show a girl the star i had 'bought' for her (but that's another story).
stargazing can be a powerful drug. be careful what you ask for.
peace, stephen.
tinyurl.com/saberdoesthestarz
tinyurl.com/c14isawesome

No comments:
MBヒ円
saber, stargazing, caldwell astronomy, outreach, saber's beads, stargazing, stephen saber

Melotte 20: The Scoop On Mirfak

radec $0327+4848$ psa 02, 13
specifically, i see the cradle (xistera) used in the 1982's tron grid jai-alai game, with mirfak as the shimmering ball (cesta).
or is it just an ice cream scoop?
mel20, aka the alpha persei association, has a combined mag of 1.2, spans over 3°, and consists of some 50 stars. still, this often-unsung treasure has the misfortune of competing for attention with nearby powerhouses like c14/double cluster, c41/hyades, and m45/pleiades. generally considered best in binoculars, i equally enjoy scoping-out the many doublestars residing within the asterism.
my deepsky obsession began in perseus, so i never miss a chance to throw glass at this subtle and beautiful stellar pattern.
saber, stargazing, caldwell asterisms, astronomy, binoculars, caldwell, deepsky, dso, perseus, stargazing, stephen saber, telescope

sharpshooting: caldwell 7

at magnitude 8.9, caldwell 7 (aka ngc 2403) is the brightest of the non-messier galaxies. in fact, most do a double-take on their first sighting, wondering how this beauty managed to evade chuck's scrutiny. c7's nickname 'the island universe' comes from its isolation among the realm of dim suns comprising the constellation camelopardalis.
but to draw an rdf bead on c7 we'll start at the nose of the big bear asterism in ursa major. muscida (1 uma, mag 3.3) is the vertex of a slightly flattened triangle, with c7 and 23 uma (mag 3.7) forming the base. to more easily relate its position i've shown a july-ish, right-side up bear, but midnight culmination for c7 is actually in mid-january when our bear is almost upside-down (at which time the galaxy can also be found roughly 25° directly above polaris). the famous galactic pair m81/82 are its closest bright kin, so they're a good jumping-off point to throw some glass and appreciation at the island universe as well.

happy hunting!

caldwell 7 forms a triangle with muscida and 23 uma
(photo credit: dss/chart credit: mobile obs)
stephen saber/saber does the stars/2004-2019/all contents within are free use and may be reprinted with author acknowledgement

No comments:

MEヒ f (

saber, stargazing, caldwell binoculars, caldwell catalogue, deepsky, dso, ngc 2403, saber does the stars, saber's beads, starhopping, stephen saber, telescopes

2017 and 2024 Total Solar Eclipses: This Is Getting Too Easy

Both eclipse paths intersected a few hours drive from me in southern Illinois. This could spoil a guy. The friend I visited for the events had both totalities run a path directly through her backyard. Why be an eclipse chaser when the eclipses chase you? Enjoying the show, Stephen.

solar corona courtesy of eclipsed.com

map courtesy of accuweather.com
also see:
Saber does The Stars
C14 Is Awesome!
POV Astro Vids
saber, stargazing, caldwell 2017, eclipse, google map, outreach, saber does the stars, saber's beads, stephen saber

prettiest globular?

c106 (47 tucanae/ngc 104) in tucana
courtesy of seds
if i had my choice of hot globs to take to the prom it would easily be 47 tucanae (aka c106/ngc104). wonderful symmetry and resolution gradient. love her sexy aussie accent, too.
the great hercules cluster (m13/ngc6205) and omega centauri (c80/ngc5139), while blatantly impressive, are more about brute strength impact, and would be my first choices if i were hiring, say, nfl linemen.
the 4th magnitude southern showpiece cluster escorts our neighboring galaxy- the small magellanic cloud- across the sky, and culminates in september at radec 0024-7205 (psa 80).
tinyurl.com/saberdoesthestarz
tinyurl.com/c14isawesome

No comments: ME日电
saber, stargazing, caldwell astronomy, caldwell catalogue, deepsky, outreach, saber does the stars, saber's beads, stargazing, stephen saber

Messier Reunions/M-Cubed

by stephen saber

an annual 'marathon' seems to scare some amateurs off, or just makes it sound like too much work. 'messier reunions' might have a more inviting and celebratory feel to it. of course, there are those who dread reunions as well; the bratty kids (virgo cluster), the weird uncle (m73), the daughter who has a hot date and can't wait to get out of there (m74), the black sheep (m30), et al.
speaking of the bratty kids, a question arose about difficulties sharpshooting the virgo galaxies while running my m-cubed 'naked' (without lists, charts, redlight, etc.). there are red dot patterns i visualize between denebola and vindemiatrix that have their assigned numbers (most maps are too cluttered in this area to give pattern recognition a chance). plus there are only 3-4 galaxies in the entire area that even compete for brightness. i guess itake it for
granted as the collective pattern is burned into my brain, but i'll take a shot at showing what i 'see' in a dark sky (i fingerpainted this with my mobile's pic tweak tool so cut me some artistic slack), and the same rdf bullets fired into a crowd. m84/86 are close to midway between denny and vin. note the crude backwards checkmark starting at 6 com, and even cruder coathanger to the southeast.

No comments:

```
MBヒ!&
```

saber, stargazing, caldwell asterisms, astronomy, binoculars, concordiem borealis, deepsky, dso, galaxies, m-cubed, messier marathon from memory, saber does the stars, saber's beads, stargazing, telescopes

Extreme Crescent Hunting

Saber's Beads: The 'string of pearls' illuminated arc of lunar peaks prior to the first complete crescent. Note the striking resemblance to the moments before and after a total solar eclipse. (27 may 2006. age +20.1 hrs. raw image credit: maurice collins/ltvt)

The moonrise before and moonset after each New Moon offer stargazers the opportunity to view the thinnest lunar crescents. There are many websites and apps that provide exact moonrise/set data for any location. Here are some additional tips to maximize your chances of sighting our very young (or old) moon.

Set up at a site with as much altitude as possible overlooking an unobstructed horizon. Optimal sky transparency allows the crescent to be detected and tracked down to, or up from, the horizon.
Using a telescope or binoculars (mounted binos are recommended), fine tune the focus on Venus, Jupiter, or one of the brighter stars beforehand.
For dusk attempts, have Sol's setting azimuth on hand- making note after sunset of a random landmark at that position for reference- as well as Luna's altaz position at sunset thru moonset. Accordingly, for dawn attempts, have Luna's altaz info for moonrise thru sunrise.
As dawn slivers have the advantage of possible detection with dark-adapted eyes, wearing sunglasses during the day prior to sunset attempts is recommended for maximum 'dusk' adaptation. Once the crescent is acquired in binoculars, walk the bino down to the horizon/random landmark in consecutive FOVs for the approximate naked-eye altaz.
A favorable elongation is important. In the 24 hours before or after New Moon, Luna's angular separation from Sol can vary by several degrees. With a favorable ecliptic, net elongations (as altitude) of 6° or more at sunset or moonrise offer the best window for detection.
Observers nearer to the equator than the poles enjoy a much greater frequency of steep ecliptics. Illuminated fractions of same-age crescents within 24 hours of New Moon can vary by 200% and a full magnitude of brightness due to distance, libration, and sun angle. Slivers near perigee help present a thicker and brighter lunar profile for personal record crescent spotting.
Last but not least, don't always count-out a shallow ecliptic. Occasionally our moon's extreme northern or southern declination will compensate for a less than favorable ecliptic angle.

BRACKETING THE SLIVERS
Another rare and challenging notch for ones lunar bedpost is to catch the consecutive waning and waxing crescents within 24 hours on each side of New Moon.
For example, the July 2008 Buck Moon offered such an opportunity as I was able to spot both the -16.5 hour illumination before sunrise on the 2 nd and the +23.5 hour sliver just after sunset on the

3rd.
Clean horizons for both windows is a gift in itself.

SABER'S BEADS

The 'holy grail' of extreme crescent hunting is to catch the segmented arc of illuminations occurring before and after the first and last complete crescent
Personal research of 100+ sighted thin crescents (at 2% or less illumination) and several hundred simulations indicate additional favorable parameters to sight this aspect include that our moon ideally be revealing a 1.4% or less illumination while traveling on a neutral or northern ecliptic declination, while also showing a strong south and east libration.
It's a rare alignment of cycles, but the visual aspect can now be more realistically simulated and predicted with the advancement of LRO-based programs and apps.
On the plus side, the full necklace of Saber's Beads can potentially be sighted on crescents within about 30 hours of New Moon (within 20-24 hours generally provides the most beading observable in a darker/deep twilight sky).
[exerpt from Saber Does The Stars by Stephen Saber]
http://c14isawesome.blogspot.com
http://saberdoesthestars.wordpress.com
http://saberscorpx.vidmeup.com

No comments: ME f

saber, stargazing, caldwell astronomy, binoculars, chicago, crescent, drummer, moon, musician, new moon, saber does the stars, saber's beads, stargazing, stephen saber, telescopes, thinnest crescent, twilight, youngest crescent

waning interest: hunting the oldest crescent moon

if you're into chasing thin crescents and not taking advantage of the waning slivers, you're missing half of the challenge and rewards. dawn crescents don't get nearly the attention of their dusk counterparts. there is no cultural significance and most of the world is still asleep. this is unfortunate as oldest crescents usually enjoy cleaner, steadier air, and observers already have a jump on dark adaptation. catching the thin horn of luna's limb emerging from the horizon can also be an addictive twist to the dusk event. the still of the night also lends itself to creating a more peaceful and contemplative experience.
double your pleasure, practice, and conquests- support your oldest crescents.
peace, stephen
tinyurl.com/saberdoesthestarz
tinyurl.com/c14isawesome

Despite the 4th mag brightness optimism, C 20 requires both very transparent and steady dark skies to reveal itself at 1x. My first naked-eye view of the fuzzy continent and gulf of mexico was one of the many 'double-take' moments that accumulate from repeated observing; like the first time seeing obvious red in M 42, or noticing your shadow being cast by venus' light alone.
a.l. caldwell catalog observe program
https://www.astroleague.org/caldwell-observing-program-introduction/

Abstract

hubble's caldwell catalog https://www.nasa.gov/content/goddard/hubble-s-caldwell-catalog

the caldwell catalog: a gift from an icon
http://www.tinyurl.com/gifffromanicon
also see
http://www.tinyurl.com/c14isawesome
http://www.tinyurl.com/saberdoesthestarz
http://www.youtube.com/saberzastrovidz
raw image credit: sdss
related searches: astronomical league, seds, nasa, hubble's caldwell catalog, messier-caldwell marathon, m-cubed, messier marathon from memory, deepsky lists/concordiem borealis, stephen saber, saber does the stars, saber's beads, c14 is awesome, saberscorpx
saber, stargazing, caldwell astronomical league, astronomy, binoculars, caldwell catalog, concordiem borealis, deepsky, dso, herschel 400, messier marathon from memory, messier-caldwell marathon

as a rule, i've never been the type to mention anyones mistakes in grammar as long as i know what they meant to say. but this is what comes to mind whenever i see 'complement' misspelled in this popular stargazing adage. (actually, i hope all my obs equipment get along this well with each other.)
peace, stephen
tinyurl.com/saberdoesthestarz
tinyurl.com/c14isawesome

No comments:
MEヒ』(
saber, stargazing, caldwell astronomy, binoculars, outreach, saber's beads, stargazing, stephen saber, telescopes

Quick and Dirty Binocular Mag Comparisons

by stephen saber

first, a couple for lady luna. couldn't decide which one i liked better. top one has a pac-man thing going on. for image scale purposes only. resolution increases proportionately in higher mag noks.

m45/pleiades

c14 is awesome!

also see

saber does the stars (vol. 1)
saber does the stars (vol. 2/c14 is awesome!
stephen saber's astro-vids at youtube

No comments:

saber, stargazing, caldwell astronomy, binoculars, caldwell catalog, deepsky, dso, messier marathon from memory, messier-caldwell marathon, moon, pleiades, stargazing

A.L. Southern Sky Observe Program Mash-Up:
 Binocular, Telescopic, and Caldwells

Stephen Saber
Southern sky fix of DSOs appearing in the Binocular program [B], Telescopic program [T], and Caldwell Catalog [C] objects \#59-109 (so they can be logged for that program as well). Targets are listed alphabetically by constellation and Right Ascension. 100 more bright doublestars down under can be found here. Happy hunting.
[T] C107/NGC6101 Apus 16h 25.8 m - $72^{\circ} 12$ ' $9.25^{\text {' GC }}$
[T] C63/NGC7293 Aquarius 22h $29.6 \mathrm{~m}-20^{\circ} 48^{\prime} 7.516$ ' PN
[C]* C82/NGC6193 Ara 1641-4846 mag 5.2 OC
[B] NGC 6208 Ara 1650-5349 mag 7.2 OC
[T] NGC 6250 Ara $16 \mathrm{~h} 58.0 \mathrm{~m}-45^{\circ} 56^{\prime} 5.97^{\prime}$ OC
[B] H 13 Ara 1702-4806 mag 9.0 OC
[B] IC 4651 Ara 1725-4957 mag 6.9 OC
[B/T] C81/NGC6352 Ara 17h 25.5 m -48ํ 25' 7.89 ' GC
[B/T] NGC 6362 Ara 17h 31.9 m - $67^{\circ} 03^{\prime} 8.114$ ' GC
[B/T] C86/NGC6397 Ara 17h 40.7 m - $53^{\circ} 40^{\prime} 5.330$ ' GC
[C] C64/NGC2362 Canis Major 0719-2457 mag 4.1 OC
[B/T] C96/NGC2516 Carina 07h 58.3 m - $60^{\circ} 51$ ' 3.830 ' OC
[B/T] NGC 2808 Car 09h 12.0 m -64 $52 ’ ~ 6.2 ~ 13 ~ ' ~ G C ~$
[C] C90/NGC2867 Car 0921-5819 mag 9.7 PN
[B/T] NGC 3114 Car 10h 02.7 m $-60^{\circ} 06^{\prime} 4.235^{\prime}$ OC
[T] NGC 3247 Car 10h 25.9 m -57 $56 ’ 7.66^{\prime}$ OC + Neb
[B/T] NGC 3293 Car 10h 35.8 m -58º $14^{\prime} 4.740 .0^{\prime}$ OC + Neb
[T] NGC 3324 Car 10h 37.3 m -58ํ $38^{\prime} 6.716 .0^{\prime}$ OC + Neb
[B] Mel 101 Car 1042-6506 mag 8.9 OC
[B/T] C92/NGC3372 Car 10h 43.8 m -59ํ 52' 120.0^{\prime} OC + Neb Eta Carina
[B/T] C102/IC2602 Car 10h 43.9 m -64ํ 24' 1.650 ' OC Southern Pleiades
[T] Keyhole Car 10h 44.3 m - $59^{\circ} 39^{\prime}$ Dk Nebula
[B/T] C91/NGC3532 Car 11h 05.6 m -58º $44^{\prime} 355.0^{\prime}$ OC
[B] IC 2714 Car 1118-6242 mag 8.2 OC
[B] Mel 105 Car 1120-6330 mag 8.5 OC
[T] NGC 3572 Car 11h 10.4 m - $60^{\circ} 15^{\prime} 6.620 .0$ ' OC + Neb
[B/T] C97/NGC3766 Centaurus $11 \mathrm{~h} 36.1 \mathrm{~m}-61^{\circ} 37^{\prime} 5.312 .0^{\prime}$ OC [T] C100/IC2944 Cen 1137-6302 mag 4.5 OC
[T] NGC 3918 Cen 11h $50.3 \mathrm{~m}-57^{\circ} 11$ ' 8.40 .3 ' PN Blue Planetary
[B] NGC 4852 Cen 1300-5936 mag 8.5 OC
[T] C83/NGC4945 Cen 13h 05.4 m -49응 28 ' 9.3 20x3.8 ' Galaxy [B/T] C77/NGC5128 Cen 13h $25.5 \mathrm{~m}-43^{\circ} 01^{\prime} 7.8$ 25x20 'Galaxy Centaurus A [B/T] C80/NGC5139 Cen $13 \mathrm{~h} 26.8 \mathrm{~m}-47^{\circ} 29^{\prime} 3.953$ ' GC Omega Centauri [B/T] C84/NGC5286 Cen $13 \mathrm{~h} 46.4 \mathrm{~m}-51^{\circ} 22^{\prime} 7.411$ ' GC [T] NGC 5281 Cen $13 \mathrm{~h} 46.6 \mathrm{~m}-62^{\circ} 55^{\prime} 5.95 .0$ ' OC [B/T] NGC 5316 Cen $13 \mathrm{~h} 54.0 \mathrm{~m}-61^{\circ} 52^{\prime} 613$ ' OC
[B] NGC 5460 Cen 1408-4819 mag 5.6 OC
[B] NGC 5617 Cen 1430-6043 mag 6.3 OC
[B] NGC 5662 Cen 1435-5633 mag 5.5 OC
[T] AlphaCen Cen 14h $39.7 \mathrm{~m}-60^{\circ} 500$ Double star 0.0, 1.2 mag; sep 18.1"
[C] C62/NGC247 Cetus 0047-2046 mag 8.9 GX
[T] C109/NGC3195 Chameleon 10h 09.4 m - $80^{\circ} 52^{\prime} 11.50 .6$ ' PN
[B/T] C88/NGC5823 Circinus 15h $05.5 \mathrm{~m}-55^{\circ} 36^{\prime} 7.910 .0$ ' OC
[B/T] C73/NGC1851 Columba 05h $14.1 \mathrm{~m}-40^{\circ} 03^{\prime} 70111.0^{\prime} \mathrm{GC}$
[B] C78/NGC6541 Corona Australis 1808-4342 mag 6.1 GC
[C] C68/NGC6729 CrA 1902-3657 mag 9.7 BN
[C] C60/61 NGC4038/9 Corvus 1202-1852 mag 11/13 GX
[T] NGC 4361 Corvus $12 \mathrm{~h} 24.5 \mathrm{~m}-1847^{\prime} 10$ 1.7' PN
[B] NGC 4052 Crux 1202-6312 mag 8.5 OC
[B] NGC 4103 Cru 1207-6115 mag 7.4 OC
[B] NGC 4337 Cru 1224-5808 mag 8.6 OC
[B] H5 Cru 1225-6029 mag 8.5 OC
[B] NGC 4349 Cru 1225-6154 mag 7.4 OC
[T] Acrux Cru 12 h 26.6m -630 06^{\prime} Double Star 1.3, 1.7 4.2"; 4.9 90"
[B/T] C98/NGC4609 Cru 12h 42.3 m -62ํ $59^{\prime} 6.55^{\prime}$ OC
[B/T] C99/Coalsack Cru 12h 53 m -63 400^{\prime} Dk Nebula
[B/T] C94/NGC4755 Cru 12h 53.6 m -60오 $22^{\prime} 4.210$ ' OC The Jewel Box
[T] NGC 1763 Dorado 04h 56.8 m -66º $24^{\prime} 25.0$ ' Br Neb In LMC
[T] NGC 1850 Dor 05h $08.7 \mathrm{~m}-68^{\circ} 46^{\prime} 9.33^{\prime}$ OC In the LMC
[B] LMC 0524-6945 Dor mag 0.9 GX
[T] NGC 1955 Dor 05h 26.1 m -67 $28^{\prime} 9$ OC + Neb In the LMC [T] NGC 1962 Dor 05h $26.5 \mathrm{~m}-68^{\circ} 46^{\prime} 8$ OC + Neb In the LMC [B/T] C103/NGC2070 Dor 05h 38.7 m -69ㅇ $06^{\prime} 8.240$ ' OC + Neb Tarantula [T] NGC 1549 Dor 04h 15.7 m -55º $35^{\prime} 10.74 .9 \times 4$ ' Galaxy pair with ngc 1553 [T] NGC 1566 Dor 04h 20.0 m - 545610.3 8.3x 6.5 galaxy [T] NGC 2074 Dor 05h 38.9 m -69ํ 28^{\prime} OC + Neb In the LMC
[T] NGC 1291 Eridanus 03h $17.3 \mathrm{~m} \mathrm{-41}{ }^{\circ} 07^{\prime} 9.49 .8 \times 8.1$ ' Galaxy
[T] C67/NGC1097 Fornax 02h 46.3 m -30 $16^{\prime} 10.29 .3 \times 6.2^{\prime}$ Galaxy
[T] NGC 1316 For 03h $22.6 \mathrm{~m}-37^{\circ} 12^{\prime} 9.411$ x7 ' Galaxy
[T] NGC 1360 For 03h $33.3 \mathrm{~m}-25^{\circ} 52^{\prime} 9.66 .4$ ' PN
[T] NGC 1365 For 03h $33.6 \mathrm{~m}-36^{\circ} 08^{\prime} 10.311 .3 \times 6.2$ ' Galaxy
[T] NGC 1399 For 03h 38.5 m -35 ${ }^{\circ} 27$ ' $9.93 .2 \times 3.1$ ' Galaxy
[B/T] C87/NGC1261 Horologium 03h $12.3 \mathrm{~m}-55^{\circ} 13^{\prime} 8.37^{\text {' GC }}$
[T] C59/NGC3242 Hydra 10h $24.8 \mathrm{~m}-18^{\circ} 38^{\prime} 8.6 .4$ PN Ghost of Jupiter
[T] NGC 3621 Hya 11h 18.3 m -32 48 9.8 13.3x6.1 Galaxy
[T] M83/NGC5236 Hya 13h $37.0 \mathrm{~m}-29^{\circ} 52^{\prime} 8.2$ 12.8x11.4 ' Galaxy
[C] C66/NGC5694 Hya1440-2632 mag 10.2 GC
[B] NGC 5822 Lupus 1505-5421 mag 6.5 OC
[T] NGC 5927 Lup 15h 28.0 m -50ㅇ $40^{\prime} 85.7^{~ ' ~ G C ~}$
[T] NGC 5986 Lup 15h 46.1 m -370 47 ' 7.69 ' GC
[T] C108/NGC4372 Musca 12h $25.8 \mathrm{~m}-72^{\circ} 40^{\prime} 7.25^{\text {' GC }}$
[B] NGC 4463 Mus 1230-6448 mag 7.2 OC
[B] H6 Mus 1235-6810 mag 9.5 OC
[B] NGC 4815 Mus 1258-6457 mag 8.6 OC
[B/T] C105/NGC4833 Mus 12h $59.6 \mathrm{~m}-70^{\circ} 53^{\prime} 8.413 .5$ ' GC
[T] NGC 5189 Mus $13 \mathrm{~h} 33.5 \mathrm{~m}-65^{\circ} 59^{\prime} 9.53 .1 \times 1.2$ ' PN
[B] NGC 5925 Norma 1528-5431 mag 8.4 OC
[T] NGC 5946 Nor $15 \mathrm{~h} 35.5 \mathrm{~m}-50^{\circ} 40^{\prime} 8.43$ ' GC
[B/T] NGC 6067 Nor 16h 13.2 m -54́ $13^{\prime} 5.612$ ' OC
[B] H 10 Nor 1616-5452 mag 9.0 OC
[B/T] C89/NGC6087 Nor 16 h 18.9 m - $57^{\circ} 54^{\prime} 5.412$ ' OC
[B] NGC 6134 Nor 1628-4909 mag 7.2 OC
[B] NGC 6152 Nor 1633-5237 mag 8.1 OC
[B] NGC 6167 Nor 1634-4936 mag 6.7 OC
[T] M62/NGC6266 Ophiuchus 17h $01.2 \mathrm{~m}-30^{\circ} 07^{\prime} 6.411$ ' GC
[T] C101/NGC6744 Pavo 19h 09.8 m -63 $51^{\prime} 9.1$ 20x12' Galaxy [B/T] C93/NGC6752 Pavo 19h 10.9 m -59ํ $59^{\prime} 5.328$ ' GC
[T] NGC 2439 Puppis 07h $40.8 \mathrm{~m}-31^{\circ} 41^{\prime} 6.910$ ' OC
[T] M93/NGC2447 Pup 07h 44.6 m -23 52' 6.2 22' OC
[B] NGC 2451 Pup 0746-3758 mag 2.8 OC
[B] C71/NGC2477 Pup 0752-3833 mag 5.8 OC
[T] NGC 2527 Pup 08h 04.9 m -28 09' 6.5 22' OC
[B] NGC 2546 Pup 0812-3738 mag 6.3 OC
[B] NGC 2627 Pyxis 0837-2957 mag 8.4 OC
[T] NGC 1313 Reticulum 03h 18.2 m -66º $30^{\prime} 9.29 .1 \times 6.9$ ' Galaxy
[T] M20/NGC6514 Sagittarius 18h $02.3 \mathrm{~m}-23^{\circ} 01^{\prime} 617 \times 20$ ' OC + Neb [T] B 86 Sgr 18h 02.9 m -27 52' 5' Dk Neb Near NGC 6520 [T] M8/NGC6523 Sgr 18h $03.8 \mathrm{~m}-24^{\circ} 23^{\prime} 650 \times 40$ ' Br Neb [T] M17NGC6618 Sgr 18h $20.8 \mathrm{~m}-16^{\circ} 11^{\prime} 646.0^{\prime} \mathrm{OC}+$ Neb [T] M22/NGC 6656 Sgr 18h 36.4 m -230 54' 5.233 ' GC [T] NGC 6723 Sgr 18h 59.6 m - $36^{\circ} 38^{\prime} 6.813$ ' GC [T] M55/NGC6809 Sgr 19h $40.0 \mathrm{~m}-30^{\circ} 58^{\prime} 6.319$ ' GC
[T] M4/NGC6121 Scorpius 16h 23.6 m -26º $32^{\prime} 5.430$ ' GC [B] C75/NGC6124 Sco 1626-4040 mag 5.8 OC [B/T] C76/NGC6231 Sco 16h 54.2 m -410 $49^{\prime} 2.614$ ' OC + Neb [T] NGC 6281 Sco 17h 04.8 m -37 $54^{\prime} 5.48$ ' OC + Neb [C] C69/NGC6302 Sco 1714-3706 mag 12.5 PN [T] NGC 6388 Sco 17h 36.3 m - $44^{\circ} 44^{\prime} 6.86$ ' GC [T] M6/NGC6405 Sco 17h 40.3 m -32º 16' 4.214 ' OC [T] M7/NGC6475 Sco 17h $53.9 \mathrm{~m}-34^{\circ} 49^{\prime} 3.380 .0$ ' OC
[T] NGC 7793 Sculptor 23h 57.8 m -32 35' 9.6 10.0x6.5 Galaxy [T] C72/NGC55 Scl 00h $15.1 \mathrm{~m}-39^{\circ} 12$ ' 8.432×6 ' Galaxy [T] C65/NGC253 Scl 00h $47.6 \mathrm{~m}-25^{\circ} 17^{\prime} 827 \times 6$ ' Galaxy [T] NGC 0288 Scl 00h 52.8 m - $26^{\circ} 35^{\prime} 8.113$ ' GC [C] C70/NGC300 Scl 0055-3741 mag 8.1 GX
[B] NGC 6584 Telescopium 1819-5213 mag 9.0 GC
[B/T] C95/NGC6025 Triangulum Australe 16h $03.3 \mathrm{~m}-60^{\circ} 25^{\prime} 5.112$ ' OC
[B/T] C106/NGC104 Tucana 00h 24.1 m -72º $05^{\prime} 450$ ' GC 47 Tucanae [B/T] SMC/NGC292 Tuc 00h $52.8 \mathrm{~m}-72^{\circ} 50^{\prime} 2.7$ 210x140' Galaxy [T] NGC 330 Tuc 00h 56.3 m - $72^{\circ} 28^{\prime} 9.62^{\prime}$ OC In the SMC
[T] NGC 346 Tuc 00h 59.1 m -72¹1' 10.314 ' OC + Neb In the SMC [B/T] C104/NGC362 Tuc 01h $03.2 \mathrm{~m}-70^{\circ} 51$ ' 6.813 ' GC [T] BetaTuc Tuc 00h 31.5 m -62 58 Double Star 4.4, 4.5 27"; 10 ' 5.1 [T] NGC 371 Tuc 01h $03.5 \mathrm{~m}-72^{\circ} 05^{\prime} 8^{\prime}$ OC In the SMC [T] NGC 419 Tuc 01h 08.3 m -72 $53^{\prime} 10.6$ 2.6' GC In the SMC
[B/T] NGC 2547 Vela 08h 10.2 m -49ํ 14' 4.720 ' OC
[B] C85/IC2391 Vel 0840-5304 mag 2.5 OC
[B/T] IC 2395 Vel 08h $42.5 \mathrm{~m}-48^{\circ} 07^{\prime} 4.68^{\prime} \mathrm{OC}$
[B] NGC 2659 Vel 0843-4457 mag 8.6 OC
[T] NGC 2669 Vel 08h $46.3 \mathrm{~m}-52^{\circ} 52^{\prime} 6.112$ ' OC
[B] NGC 2670 Vel 0846-4847 mag 7.8 OC
[B] IC 2488 Vel 0928-5659 mag 7.4 OC
[B] NGC 2910 Vel 0930-5254 mag 7.2 OC
[B] NGC 2925 Vel 0934-5326 mag 8.3 OC
[T] C74/NGC3132 Vel 10h $07.0 \mathrm{~m}-40^{\circ} 26^{\prime} 8.21 .3 \times 0.8$ ' PN
[B/T] C79/NGC3201 Vel 10h $17.6 \mathrm{~m}-46^{\circ} 25$ ' 6.921 ' GC
[B] NGC 3228 Vel 1022-5143 mag 6.0 OC
[T] M104/NGC4594 Virgo 12h 40.0 m-11º 37 ' 9 8.8x3.5 ' Galaxy
*caldwell not appearing in either southern-only program.
c91 in carina courtesy of sdss

A.L. Southern Sky Binocular Observe Program
A.L. Southern Sky Telescopic Observe Program
A.L. Caldwell Catalog Observe Program

Saber Does The Stars

C14 Is Awesome!

POV Astro Vids @ YouTube

No comments

C6: the cat's eye nebula (image credit: sdss)

Stephen Saber

Sir Patrick's deepsky object selections were based on targets that have scientifically special or unique properties (not just added as another pretty face or having a nickname) along with brightness. This Hubble's Caldwell Catalog link leads to the proper Gen-C/NASA primary identifiers, the old boomer NGC\#, and each Caldwells' claim to fame.

Saber Does The Stars

C14 Is Awesome!
POV Astro Vids

Asterisms: Contributions

Stephen Saber

SkyTimes interview (p.2)

st: you often seem have a very esoteric view of the sky.
I'd call it 49\% science, 51\% beauty. My passion frequently comes out as humorous (to me, at least). Probably because my friend and mentor Rick Shaffer taught me, through his book, that stargazing could be interesting and fun. The night sky is still just a big playground to me.
st: you must have hundreds of asterisms. I've seen a few.
Showing amazing restraint l've only unleased 6 on the astro-community. I'm not even going to make my own catalog (but if I did it would be Sbr 1-6). Most appear in the A.L. Asterism Observe Program.

Ally's Braid in Taurus

Little Joe (from Kokomo) in Pisces

The Jai-Alai or Ice Cream Scoop in Perseus

The Glum Cyclops in Aquarius

The Sir Patrick Cluster in Cassiopeia (couldn't resist)
also see:
Saber Does The Stars
C14 Is Awesome!
POV Astro Vids

No comments:

Subscribe to: Posts (Atom)

