## Fermilab Tour Spangenberg



### **History of Fermi**









## History

- Founded in 1967 as the National Accelerator Laboratory
  - 1<sup>st</sup> Director = Robert Wilson, opened ahead of schedule and under budget
  - Most of the sculptures you'll see are his

- Renamed in honor of Enrico Fermi in 1974
- Wilson stepped down in 1978 due to lack of funding
- Leon Lederman takes over and replaces the accelerator with the Tevatron – able to collide protons and antiprotons at energies of 1.96 TeV.

### Mendeleev and the Periodic Table

| H<br>1.01         | 11                | Ш                | IV                | V                | VI                | VII              |                  |            |            |
|-------------------|-------------------|------------------|-------------------|------------------|-------------------|------------------|------------------|------------|------------|
| Li<br>6.94        | <b>Be</b><br>9.01 | <b>B</b><br>10.8 | C<br>12.0         | <b>N</b><br>14.0 | <b>0</b><br>16.0  | <b>F</b><br>19.0 |                  |            |            |
| Na<br>23.0        | Mg 24.3           | AI<br>27.0       | Si<br>28.1        | <b>P</b><br>31.0 | <b>S</b><br>32.1  | CI<br>35 5       |                  | VIII       |            |
| <b>K</b><br>39.1  | Ca<br>40.1        |                  | <b>Ti</b><br>47.9 | V<br>50.9        | Cr<br>52.0        | Mn<br>54.9       | Fe<br>55.9       | Co<br>58.9 | Ni<br>58.7 |
| Cu<br>63.5        | Zn<br>65.4        |                  |                   | As<br>74.9       | <b>Se</b><br>79.0 | Br<br>79.9       |                  | 100100     | 1012       |
| <b>Rb</b><br>85.5 | Sr<br>87.6        | <b>Y</b><br>88.9 | <b>Zr</b><br>91.2 | Nb<br>92.9       | Mo<br>95.9        |                  | Ru<br>101        | Rh<br>103  | Pd<br>106  |
| Ag                | Cd                | In<br>115        | <b>Sn</b>         | <b>Sb</b><br>122 | <b>Te</b><br>128  | 1127             |                  | 1.02760    | 16255      |
| Ce<br>133         | Ba<br>137         | La<br>139        |                   | Ta<br>181        | W<br>184          |                  | <b>Os</b><br>194 | lr<br>192  | Pt<br>195  |
| Au<br>197         | <b>Hg</b><br>201  | <b>Ti</b><br>204 | <b>Pb</b> 207     | <b>Bi</b> 209    |                   |                  |                  |            |            |
| - Andrews         | 10990             |                  | Th                |                  | U                 |                  |                  |            |            |



| 1.                                                       |                                                  |
|----------------------------------------------------------|--------------------------------------------------|
| notes                                                    |                                                  |
| <ul> <li>as of yet, elenv<br/>official name d</li> </ul> | ents 113-118 hove no<br>lesignated by the KIRKC. |
| <ul> <li>1 kJ/mol ~ 96</li> </ul>                        | .485 eV.                                         |
| <ul> <li>all elements on</li> </ul>                      | e implied to have on                             |
|                                                          | and heaten                                       |

| 16, 58 | 140.9076 59  | 144.242 60  | (145) 61 | 150.36 62 | 151.964 63      | 157.25 64 | 158.9253 65 | 162,500 66    | 164.9303 67 | 167.259 68 | 168,9342 69 | 173.054 70 |
|--------|--------------|-------------|----------|-----------|-----------------|-----------|-------------|---------------|-------------|------------|-------------|------------|
| e      | Proseodymium | Nd          | Pm       | Sm        | Eu<br>fundation | Gd        | Tb          | Dy            | Ho          | Er         | Tm          | Yb         |
| 380 90 | 231.0358 91  | 238 0289 92 | (237) 93 | (244) 94  | 243             | (247) 96  | (247) 97    | (251) 98      | (252)       | (257) 100  | (258) 101   | (239) 102  |
|        | Pa           | U Uranium   | Np       | Pu        | Am              | Cm *      | Bk          | Cf Collornium | Es          | Fm         | Md          | No         |

|            |                                                                                                                                                                                                                                                                                            |                                              |                                                                                                                                           |               |                                                                                                                 | Particles in physics                                                                                                                                         |  |  |  |  |
|------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------|---------------|-----------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|
| nentary    | Fermions                                                                                                                                                                                                                                                                                   | Quarks                                       | Up (quark · antiquark) · Down (quark · antiquark) · Charm (quark · antiquark) · Strange (quark Bottom (quark · antiquark)                 |               |                                                                                                                 |                                                                                                                                                              |  |  |  |  |
|            |                                                                                                                                                                                                                                                                                            | Leptons                                      | Electron • Positron • Muon • Antimuon • Tau • Antitau • Electron neutrino • Electron antineutrino • Mu<br>Tau neutrino • Tau antineutrino |               |                                                                                                                 |                                                                                                                                                              |  |  |  |  |
|            | Bosons                                                                                                                                                                                                                                                                                     | Gauge                                        | Photon · Gluon · W and Z bosons                                                                                                           |               |                                                                                                                 |                                                                                                                                                              |  |  |  |  |
|            |                                                                                                                                                                                                                                                                                            | Scalar                                       | Higgs boson                                                                                                                               |               |                                                                                                                 |                                                                                                                                                              |  |  |  |  |
|            | Ghost fields                                                                                                                                                                                                                                                                               | Faddeev-Popov ghosts                         |                                                                                                                                           |               |                                                                                                                 |                                                                                                                                                              |  |  |  |  |
|            | Hypothetical                                                                                                                                                                                                                                                                               | Superpartners                                |                                                                                                                                           | Ga            | uginos                                                                                                          | Gluino · Gravitino · Photino                                                                                                                                 |  |  |  |  |
|            |                                                                                                                                                                                                                                                                                            |                                              |                                                                                                                                           | 0             | thers                                                                                                           | Axino · Chargino · Higgsino · Neutralino · Sfermion (Stop squark)                                                                                            |  |  |  |  |
|            |                                                                                                                                                                                                                                                                                            | Other                                        | S                                                                                                                                         | Axio<br>Steri | n ∙ Dilato<br>le neutrii                                                                                        | on • Dual graviton • Graviton • Leptoquark • Magnetic monopole • Majoron • Majorana fermi<br>no • Tachyon • W' and Z' bosons • X and Y bosons • X17 particle |  |  |  |  |
|            | Hadrons                                                                                                                                                                                                                                                                                    | Baryons / hyperons                           |                                                                                                                                           |               | Nucleon (Proton · Antiproton · Neutron · Antineutron) · Delta baryon · Lambda baryon · Sigma ba<br>Omega baryon |                                                                                                                                                              |  |  |  |  |
|            |                                                                                                                                                                                                                                                                                            | Mesons / quarkonia                           |                                                                                                                                           |               | Pion · Rho meson · Eta and eta prime mesons · Phi meson · J/psi meson · Omega meson · Upsil<br>D meson          |                                                                                                                                                              |  |  |  |  |
| nosite     |                                                                                                                                                                                                                                                                                            | Exotic hadrons                               |                                                                                                                                           |               | Tetraquark · Pentaquark                                                                                         |                                                                                                                                                              |  |  |  |  |
| iposite    | Others                                                                                                                                                                                                                                                                                     | Atomic nuc                                   | lei • At                                                                                                                                  | oms •         | Exotic at                                                                                                       | oms (Positronium · Muonium · Tauonium · Onia) · Superatoms · Molecules                                                                                       |  |  |  |  |
|            | Hypothetical                                                                                                                                                                                                                                                                               | Hypothetical baryons                         |                                                                                                                                           |               | Hexaquark · Skyrmion                                                                                            |                                                                                                                                                              |  |  |  |  |
|            |                                                                                                                                                                                                                                                                                            | Hypothetical mesons                          |                                                                                                                                           |               | Glueball · Theta meson · T meson                                                                                |                                                                                                                                                              |  |  |  |  |
|            |                                                                                                                                                                                                                                                                                            | Others Mesonic molecule · Pomeron · Diquarks |                                                                                                                                           |               |                                                                                                                 |                                                                                                                                                              |  |  |  |  |
| iparticles | Davydov soliton · Dropleton · Exciton · Hole · Magnon · Phonon · Plasmaron · Plasmon · Polariton · Polaron · Roton · Trion                                                                                                                                                                 |                                              |                                                                                                                                           |               |                                                                                                                 |                                                                                                                                                              |  |  |  |  |
| .ists      | Baryons · Mesons · Particles · Quasiparticles · Timeline of particle discoveries                                                                                                                                                                                                           |                                              |                                                                                                                                           |               |                                                                                                                 |                                                                                                                                                              |  |  |  |  |
| lated      | History of subatomic physics (timeline) · Standard Model (mathematical formulation) · Subatomic particles · Particles · Antiparticles · Nuclear (Quark model) · Exotic matter · Massless particle · Relativistic particle · Virtual particle · Wave–particle duality · Particle chauvinism |                                              |                                                                                                                                           |               |                                                                                                                 |                                                                                                                                                              |  |  |  |  |
| dia hooks  | Hadronic Matter                                                                                                                                                                                                                                                                            | Particles of                                 | the Sta                                                                                                                                   | andard        | Model -                                                                                                         | Lentons - Quarks                                                                                                                                             |  |  |  |  |



- Gell-Mann and Zweig said that all these particles were composed of combinations of quarks and antiquarks (more on that later)
- Reactions from the science community were mixed
- Is the quark an actual physical entity or a mere abstraction used to explain concepts that were not fully understood at the time
- They purported three quarks up, down, and strange (called so because it has a strangley long lifetime before decay)

### Linear accelerators

- Stanford Linear Accelerator
- Beams of protons, smash them together, see what comes out





### Stanford finds

- Up and down in 1968
- Charm in 1974

 They start finding patterns in the data (Mendeleev-esque), and predict the existence of other quarks



- Fermilab can achieve higher energy collisions than Stanford
  - Think about chemical bonds there is a certain energy you need to put into the chemical bond in order to break it
  - You need to give protons enough kinetic energy in order to smash into each other hard enough in order to break the "quark bond"



- Fermilab finds bottom quark in 1977 with its LINAC (linear accelerator)
  - Indicates

     existence of top quark
     (Mendeleev?)
     because bottom
     would need a
     partner



The top quark is sooo much more massive that it took until 1992 to find it (and we had to switch to the Tevatron....the ring collider which could make protons move faster using superconducting magnets)









### **Standard Model of Elementary Particles**



### CERN and the LHC

- Nowadays, Fermilab's collider is shutdown. CERN (the one in Switzerland) can achieve so much higher energies that Fermilab can't compete.
- Fermilab's main ring is 3.9 miles (6.3 km) in circumference and (as of 2011) could produce energies of 1.6 TeV
  - Hence Tevatron
  - Tera electron volt ~ kinetic energy of a flying mosquito
- LHC has a circumference of 16.6 miles (26.7 km) can produce energies 13 TeV





### What is a neutrino?



### WHERE THEY WILL BE DETECTED

Deep Underground Neutrino Experiment (DUNE), United States

Status: Planned Cost: US\$1 billion Will make highest-energy neutrinos of any experiment.

#### Hyper-Kamiokande, Japan

Status: Planned Cost: About \$800 million Will be the world's largest neutrino detector — it is 25 times bigger than its predecessor, Super-Kamiokande.

#### Jiangmon Underground Neutrino Observatory (JUNO), China

Status: Construction begun Cost: \$330 million Sits under 700 metres of rock.

#### India-based Neutrino Observatory (INO), India Status: Funding approved

Cost: \$233 million Will be largest experimental basic-science facility in India.

### © nature

We didn't even know of their existence until 1930's prediction



In nuclear reactions and nuclear decays

- $E = mc^2 \rightarrow mass$  is converted to energy
- For example, proton proton chain



## Wolfgang Pauli, 1930

- The neutrino first mathematically predicted by Wolfgang Pauli in 1930 to explain how beta decay (nuclear reactions) could conserve energy
- Pauli called this previously undetected particle a "neutron"
  - using the same *-on* ending employed for naming both the proton and the electron.
- Said the particle was emitted from the nucleus
  - Also note the emission of the neutrino in the proton proton chain



- James Chadwick discovered a much more massive neutral nuclear particle in 1932 and named it a neutron also, leaving two kinds of particles with the same name.
- The word "neutrino" comes from Enrico Fermi who jokingly used it during a conference in Paris in July 1932.
- The name means slangily means "lit neutral one" in Italian.
  - Distinguishes this light neutral particle from Chadwick's heavy neutron





# Why had we never detected neutrinos before?

Neutrinos don't interact with matter....basically ever

**100 trillion** neutrinos pass through your body **every second**!!!

The universe is full of small wonders. Look Inside!

**FACT:** about 65 million neutrinos pass through your thumbnail every second.

Learn Something New Every Day LSNED.com electron neutrino

neutrino neutrino

### Why don't neutrinos interact?

The atom is very tiny, having a diameter of about 10<sup>-10</sup> meters. Keep in mind that's like saying 0.000000001 meters, or about one-billionth of a meter across! But within this already extremely small atom is an even smaller region called the nucleus. The nucleus has a diameter of  $10^{-14}$  m, so it is about 10,000 times smaller than the volume of the atom as a whole. One analogy is to imagine the atom is the size of a football stadium. In that gigantic stadium the nucleus would only be the size of a small marble sitting on the 50-yard line!



### Atom

### Nucleus







### Mass Proton Mass Electron (grain of rice)





- Protons live in the nucleus, so 99.9% of an atom's mass is in the nucleus rather than being spread out across the entire atom.
- It is as if the entire mass of the football stadium were in the marble at the 50 yd line.
- The density of a nucleus is about 100,000,000,000,000 g/cm<sup>3</sup> (10<sup>14</sup>)
- You cannot fathom how dense that is.
- It is the density of about a billion cars (2.5 billion tons) in the size of a matchbox.

Which is why the neutron is so important to keep the atom together.

- Neutrinos are around 10<sup>-37</sup> m<sup>2</sup> (technically they don't have a size, this is the size of their electroweak interaction – the size of the field they create)
- About an attometer (10<sup>-18</sup> m) in diameter
- Or about 1 billionth the size of the uranium nucleus
- About a tenth the size of an electron
- About a tenth the size of an up quark
- About a tenth the size of a down quark

### Solar Neutrino Problem

- Using math and science, we predicted how many neutrinos (electron neutrinos) we should be detecting coming from the sun.
- In the 1960's, we were only receiving half to two-thirds of the expected.
- How are we detecting them?









### Neutrino Experiments

- LBNF/Dune
  - Long-Baseline Neutrino Facility/Deep Underground Neutrino Experiment



# Science Goal #1 – Neutrino Oscillation and the Matter Issue

- We've discovered something called antimatter
- There really isn't much to say at this point
- A positron is just an electron with all of the same exact properties as an electron, it just has a positive charge.
- Antiproton, antihydrogen, antihelium the exact same stuff – only has the exact opposite charges for their subatomic particles.
- The real question is why the universe seems to be dominated by matter and not antimatter (*which is the anti....*?)
  - They annihilate (E=mc<sup>2</sup>) when they combine, so there must have been more matter after the big bang than antimatter – but why? Especially considering the law of conservation of charge!!!!! The very presence of matter seems to contradict it.

# It also seems that neutrinos are their own antiparticle

- So, this is the leading hypothesis as to why we see much more matter than antimatter in the universe right now
- Like any radioactively energetic process, the Big Bang should've created equal amounts of matter and antimatter
- But the neutrinos can oscillate from one flavor to another (or from the matter properties to the antimatter properties)

### Fermilab



- Fermilab creates beams neutrinos (see video in a few slides), measures the statistics of beam constituents
- Sanford measures the statistics of which neutrinos they receive
- Statistics are done does oscillation favor one transition more than others...?
  - Hypothesis a certain type of transition is favored one in which the matter particle is the end result more often
  - The matter we see is what was left over after all of the non-transitioned antimatter met an equivalent amount of matter



- Show video on how you make neutrino beams at Fermilab
- http://www.fnal.gov/pub/science/lbnfdune/photos-videos.html
- https://www.youtube.com/watch?v=U\_xWDW Kq1CM

![](_page_35_Picture_3.jpeg)

### Other Science Goals

- Grand unification of the three or four forces
- Supernova explosions cause flurry of neutrinos – can we develop a "new type of telescope" that "sees" in the neutrino
- Also study black holes

## Other stuff Fermi has done

- Neutron chemotherapy lab
- https://www-bd.fnal.gov/ntf/

![](_page_37_Picture_3.jpeg)

![](_page_38_Figure_0.jpeg)

### d Dark Energy

ENERGY DISTRIBUTION OF THE UNIVERSE

![](_page_38_Figure_3.jpeg)

![](_page_38_Picture_4.jpeg)

![](_page_38_Figure_5.jpeg)