The Newsletter of the, Popular Astronomy Club ESTABLISHED 1936

President's Corner February 2021

Alan Sheidler

Welcome to the February edition of Reflections. We are in the middle of winter, which should be obvious to everyone and especially for astronomers. We have had very few opportunities to view celestial objects and when we have, it has been too cold or snowy for most of us to get out under the stars.

For many of us, this is a time when we take a vacation from observing and do other things (like buy new telescopes or plan observing sessions when the weather improves this spring). For me, this is the time when my mind gets to wandering.

Over the last couple weeks, I became interested in black holes and in particular, about the size of black holes. In reality, a black hole is simply an object that has a gravitational field strong enough to curve nearby space so drastically that nothing, not even light, can escape. It is difficult to imagine how strong gravity has to be for this to happen. But essentially light is affected by gravity in the same way that physical objects are.

So, if one could shine a light beam up from the "surface" of a black hole, the beam would eventually be curved back down by the black hole's gravity. Simplistically, we can think of a black hole as having an escape velocity equal to or greater than the speed of light. The "surface of the black hole" in this case is a boundary known as the event horizon. If anything passes inside the black hole's event horizon, that object would have to travel faster than the speed of light to be able to escape and since nothing can exceed
(Continued in next column)
the speed of light, this means the object is trapped in the black hole.

The escape velocity for a planet is the speed at which an object (like a rocket) would have to be launched from the surface of the planet so that it would fly up and completely escape from the planet and never fall back down again. A rocket could orbit a planet at a slightly slower speed and never fall back to the planet's surface, but in that case, the rocket would not have escaped, it would have been trapped in an orbit around the planet.

We can calculate the escape velocity for the Earth and other solar system objects using the fairly simple equation below. For those of you not wanting to bother doing the math, I created the following table showing the escape velocities for several solar system objects. Earth's escape velocity is slightly more than $25,000 \mathrm{mph}(11.18 \mathrm{~km} / \mathrm{s})$. Recall in 1968, Apollo 8 reached this speed in order to escape from Earth to reach the Moon. The escape velocity for the Sun is nearly $1,382,000 \mathrm{mph}(618 \mathrm{~km} / \mathrm{s})$ and for Deimos (one of the two Martian moons) it is only 14 mph . If you are a fast runner, you could escape from Deimos simply by running!

I won't bore you with the math, but if you are good with algebra, you can solve the escape velocity equation for r. Using the velocity of light for the escape velocity and solving for r, you can find the size of a black hole corresponding to any planet's (or star's) mass. The radius r of a black hole is called the Schwarzschild Radius. For the Sun, this is just under 3 km. In other words, if you could crunch the Sun down to less than 6 km in diameter, it would be a black hole!

It would take a lot of pressure to do that! Interestingly, if you could compress the earth

(Continued from previous page)

down to the size of a penny, it would also be a black hole! I'm not going to lay awake at night worrying about this happening, but it gives us a way to imagine the stupendous density of a black hole.

Recently, astronomers were able to obtain an image of the super massive black hole at the center of super giant elliptical galaxy M87. The mass of this black hole is estimated at 6.5 billion times the mass of our Sun. I will leave the math to you, but if you do it, you find the Schwarzschild radius of M87's black hole is 127 Astronomical Units (127 times the Earth-Sun distance). That's BIG!

Anyway, you see what happens when my mind gets to wandering. Let's hope for a break in the weather and keep looking up! Al.

object	mass	radius	escape velocity		
	kg	km	km / s	miles $/ \mathrm{s}$	mph
	$5.97 \mathrm{E}+24$	6,378	11.18	6.95	25,016
Sun	$1.99 €+30$	695,990	617.69	383.89	$1,382,020$
Jupiter	$1.90 €+27$	71,492	59.54	37.00	133,209
Mars	$6.42 \mathrm{E}+23$	3,397	5.02	3.12	11,236
Moon	$7.35 \mathrm{E}+22$	1,738	2.38	1.48	5,315
Deimos	$1.93 \mathrm{E}+15$	6	0.0063	0.0039	14

$\mathrm{G}=6.673 \mathrm{E}-11 \mathrm{Nm}^{2} / \mathrm{kg}^{2}$ (Universal Gravitational constant) $m=$ mass of object in kg
r = radius of object in meters

This image of a black hole-the first ever taken- was captured by an international team of researchers in April 2017. The black hole in located in the center of Galaxy M87.

NCRAL Seasonal Messier Marathon Program

NCRAL's Seasonal Messier Marathon observing program is NOT designed to qualify observers for the Astronomical League's Messier Observing program; the two programs are unrelated and observing requirements are quite different. In the NCRAL program, the main requirement is to quickly observe and essentially check off items from one of four seasonal lists of Messier objects as noted in the section to follow.

NCRAL recognition will consist a suitable printed certificate and a $3 / 4$-inch enameled star pin (a different color for each season). There will be no direct cost to the membership for participating in the award program; the cost of the program (pins, certificates, mailers, postage) will be borne by the Region as a benefit of affiliation. Relevant program documents are linked below

NCRAL Seasonal Messier Marathon Program Rules

NCRAL WINTER Seasonal Messier List

NCRAL SPRING Seasonal Messier List

NCRAL SUMMER Seasonal Messier List

NCRAL AUTUMN Seasonal Messier List

$$
\underset{\text { weather }}{\text { met close to you }}
$$

\square

Popular
Astronomy Club Officers

PRESIDENT - Alan Sheidler
3528 56th Street Court, Moline, IL, 61265
Phone: (309) 797-3120

VICE PRESIDENT - Dino Milani
231729 1/2 Street, Rock Island,
IL, 61201
Phone: (309) 269-4735

SECRETARY - Terry Dufek
2812 W. 65th Street, Davenport, IA, 52806 Phone: (563) 386-3509

TREASURER - Dale Hachtel
1617 Elm Shore Drive, Port Byron IL, 61275
Phone: (614) 935-5748

ALCOR - Roy E. Gustafson 11 Deer Run Road, Orion, IL, 61273
Phone: (309)526-3592

DIRECTOR OF OBSERVATORIES -

Rusty Case
2123 W. 16th Street, Davenport, IA, 52804
Phone: (563) 349-2444

PAST PRESIDENT -
Wayland Bauer
3256 Pleasant Drive, Bettendorf, IA., 52722

Phone: (563) 332-4032

NEWSLETTER EDITOR -

Terry Dufek
2812 W. 65th Street, Davenport, IA, 52806
Phone: (563) 386-3509

Contact for Information or questions here:
popularastronomyclub@gmail.com

ANNOUNCEMENTS / INFO

LOOKING FOR OLDER ISSUES OF REFLECTIONS NEWSLETTER?

HISTORY OF PAC?

For PAC Documents Use "Enrollment Form"

MEMBERSHIP OR TO RENEW?

SUBMISSIONS

If you have an article or photos to submit or items of interest, we encourage you to send them in by the 25th of the month. Links to stories are welcome also. Thank you!

Astronomical League Observing Programs

The Astronomical League provides many different Observing Programs. These Observing Programs are designed to provide a direction for your observations and to provide a goal. The Observing Programs have certificates and pins to recognize the observers' accomplishments and for demonstrating their observing skills with a variety of instruments and objects

ANNOUNCEMENTS / INFO

(27.) Attonomial league
18. Jim Hannon shared a link.

I have published a video introducing the Cedar Amateur Astronomers All Sky Camera Network on the CAA's new YouTube Channel.

YOUTUBECOM

Introduction to the CAA All Sky Camera Network
A short video introducing the All Sky Camera Network operated by...

Ever wonder Where New

 Horizons is right now and what it is up to?

CONTRIBUTIONS

Make a Moon Phases Calendar and Calculator - NEW

In this episode of Learning Space, you'll learn how to make a calendar that shows you when and where to spot the Moon for every day of the yearl I Watch on YouTube

CONTRIBUTIONS

Orion Nebula

This active stellar nursery, imaged by NASA's Spitzer Space Telescope, is located in the Orion constellation

I wanted a close up picture of the Orion Nebula, so I went there in my Space Suit! Seriously, people can download an App called "NASA Selfies", put themselves in a space suit, and chose a bunch of backgrounds and save the images. Might be something our members can do when they are home because of COVID-19.

CONTRIBUTIONS

The habitable zone will move as the Sun ages. It will move so far that the Earth will not be in this zone in a few billion years. Jupiter and Saturn will be so, I am selling land deeds on some of their satellites now - buy now and avoid the rush and the price increase!! Contributed by Roy Gustafson (contact for purchasing info)

VIDEO CONTRIBUTIONS

Some You Tube videos for you to view while being home bound

Geminid Meteor Shower 2020 through the Northern Lights - real-time HD

Interview: Is there life beyond Earth?

I Left the City to Photograph the Andromeda Galaxy

A Journey to the End of the Universe

This Decade Will Be Remembered For

Deep-Sky Astrophotography During a Full Moon?

The Starlight Xpress Oculus all-sky camera

These are the asteroids to worry about

My CALIFORNIA NEBULA Project is DONE! (CANON EOS Ra)

SKYWATCH

Planetary trio I great encore to December display

Chris Nordick

Popular Astronomy Club

This past December, the skies graced us with a vibrant conjunction of Saturn and Jupiter-just in time for the holiday celebrations. Since that time, Saturn and Jupiter have been creeping ever -ever so slowly toward the evenings south west horizon. Still beautiful and still bright and easily visible. But, if you thought two planets in conjunction were cool, imagine, imagine a three planetary conjunction. Between Jan 8th and 11th, sky watchers can catch a glimpse of a low horizon planetary trio in the western sky, best viewed about 30 minutes after sunset., Saturn and our solar systems smallest planet, Mercury, will be in conjunction. It is a sight not seen in almost six years and a great encore o Decembers planetary display.

is closest to the sun Mercury s approximately 36 million miles from the sun. At aphelion when it is farthest from the sun Mercury 43,380,000,00 miles away. And it is fast. It travels through space at 29 miles a second ($112,000 \mathrm{mph}$) and takes only 88 days for one revolution around the sun. That means your Age on mercury is nearly 3 times that on Earth. Mercury also has a slow rotation making a day on Mercury 59 days long. Yet a full day-night cycle (solar day) is 176 days, Confused? Think about it like this: As the planet rotates ever so slowly), and speeds swiftly around the Sun, the time that a certain place on Mercury experience day, night and day would take 176 days. Each Mercury day lasts for about 2 Mercury years. Now that is a long day at the office. There are two other interesting facts about Mercury, if you thought our summer and winter temperature changes were amazing here in the Midwest, consider this: Mercury's daily temperature fluctuates from 800° during the day to290° at night. That's an 1100-degree swing. The other interesting Feature OF Mercury is its magnetic field. The magnetic field I is about 1.1% as strong as Earth's. Although that does not seem like much, this small magnetic field sometimes interacts with the solar wind- those tiny particles and plasma which continue to stream from the Sun into space. When this interaction occurs magnetic tornadoes of plasma are formed that then reach Mercury's surface. Heat, frigid cold plasma TORNADOS- Earth is sounding better all the time.
Ake a look on January $9^{\text {th }}$ or $10^{\text {th }}$ in the western sky just after dark. Locate the trio of bright lights Jupiter will be the r brightest. Followed by Saturn and Mercury. If you have a pair of binoculars all three planets should be in your field of vision at once. And if you missed the conjunction, do not worry. Will I get higher in the sky later in the evening throughout January peaking in brightness between January $24^{\text {th }}$ during its greatest eastern elongation. In the meantime, consider naming the craters with your favorite artist, musicians or authors, What might you call them.

THORS, musicians and artists, Even Dr. Seuss has a named crater.
Mercury has a wildly eccentric orbit. At perihelion when it

January 2021
the star. From books and planetarium shows, I have gathered several; possible interpretations:

The star was Halley's comet. Unlikely, because Halley's comet returned in October of the year 11 BCE.

An exploding star; a nova or a supernova. Although we have no evidence of such an event in those years, there could have been one.

A planetary conjunction. The Moon did pass close to Venus in the eastern sky (the location in the east appears twice in the biblical account). My personal favorite is a conjunction between Jupiter and Venus, on June 17, 2 BCE. However, 4this conjunction happened after the death of King Herod in 4 BCE, and it would have led the Magi in the wrong direction.

However, there was a Great Conjunction in 6 BCE. (Great conjunctions involve only Jupiter and Saturn and take place roughly every twenty years.) A subset of this series involved the Moon passing close to Jupiter on April 17, 6 BCE. True to the biblical account, Jupiter was in the east over Israel at this time, and King Herod was still living.

One thing I like about the planetary conjunction theory is that astrologers in those ancient days4, more than the general population, paid attention to these events. One possible translation of "wise men" is "astrologers", people versed in how the stars and planets influence humanity. They would have paid attention to planetary conjunctions more than the general population.

It could have been a miracle. In my own life, I consider every night out under the stars as a miracle, so why not? Whatever the Christmas star was, we got to see it again as a "Great Con-
(Continued on next page)

junction" on Monday, December $21^{\text {st }}$. It is the closest that Jupiter and Saturn
have been close to each other since 1623, that long-ago year that also saw the first publication of the First Folio of Shakespeare's plays. On that day in 1623, the conjunction took placed in daylight, so no one would have paid attention to it. But the one in 2020 was visible in the early evening! Therefore, millions of people
chance close alignment of the solar system's two biggest planets is not a big scientific event. However, it is a big astrological happening. While no true scientist follows astrology these days, two thousand years ago the night sky was all about astrology. And were it not for ancient astrology, we would not enjoy today's comprehension of the night sky. Even in 1623, the last time Jupiter and Saturn were this close, most people were more interested in astrology. I quote from Shakespeare, who was did not follow judicial in astrology. The two opening lines of

Sonnet 14 state clearly that Not from the stars do I my judgment pluck, And yet methinks I have astronomy...

I believe that Shakespeare used astrology a lot in his
were definitely paying attention to it, and it reminds us of the Star of Bethlehem. Whatever it was, we shall never know. But for those of us who were able to gaze in wonder at this fabulous event, it acted to increase the nightly miracle of the magnificent sky.
Even in our postmodern age, the
plays because he knew his audience followed it. And now at the close of 2020, we have that rare opportunity to reflect on an astrological event, the joining together of two planets, a simple event that helps us to go outside, look towards the southwest, and revel in the beauty of the night sky.

UPCOMING EVENTS

Date: February 8th, 2021
Event: Regular Meeting
Location: Zoom (details to follow) Program : "Space: Year in Review" by Larry Boyle Chicago Society for Space Studies (see below)

All these dates and times are Tentative due to conditions! Please check your emails for any updates as to whether the Event will Occur!

Program "Space: Year in Review"

Mr. Larry Boyle
The Space: Year in Review presentation provides an overview of the global space activities, both manned and robotic, that occurred during 2020. It is estimated that globally over $\$ 380$ billion was spent on public and private space activities. With 72 nations having space programs and hundreds of private entities and companies working on exploring space and developing new products, 2020 was an exciting year. Some of the topics that will be addressed in Larry's presentation include:

- developments with the NASA Artemis program
- the successes of the SpaceX Commercial Crew missions
- creation of the United States Space Force
- India's plan for a crewed
Earth orbital mission

- China's plans for a new space station
- Russia's new rocket center robotic missions to the Moon Bio: Mr. Larry Boyle was President of the Chicago Society for Space Studies from 1989-2002. He is currently Vice-President. The Society was founded in 1977. He is a retired reference librarian from the Franklin Park Public Library and has had a life long interest in Space. He witnessed the Apollo 17 launch in 1972 and has seen a Space Shuttle launch. Larry is a graduate of Rosary College and Loyola University.
- March 8th, 2021 PAC Business Meeting at Butterworth Center at 7:00 PM Presentation: Smorgasbord
- March 20th, 2021 Outreach Niabi Zoo: sunset
- April 12th, 2021 PAC Regular Meeting at the Butterworth Center at 7:00 pm: Presentation: "Skies and Skywatchers of Ancient North America" Bill Iseminger
- April 17th, 2021 Outreach Niabi Zoo Sunset
- May 10th, 2021 PAC Regular Meeting at the Butterworth Center: Presentation: NASA Solar Missions", program by Dr. Therese Kucera
Mark your calendars and watch upcoming emails for more information!

SIGN UP REPORT

MONTH	NEWSPAPER ARTICLES	CONSTELLATION REPORT	PROGRAM
JAN 2021	Chris Nordick	None Scheduled	Presentation: Cosmic Horizons - Chuck Allen, Vice President, Astronomical League via Zoom
FEB 2021	Wayland Bauer	None Scheduled	"Space: Year in Review" program by Larry Boyle, Chicago Society for Space Studies, via Zoom.
MAR 2021	Paul Levesque	Ally Nordick (Orion)	SMORGASBORD (SEE BELOW)
APR 2021	Roy Gustafson	None Scheduled	Presentation: "Sky watchers of Ancient North America" Bill Iseminger, Cahokia Mounds State Historic Site via Zoom
MAY 2021	Dave Smith	None Scheduled	"NASA Solar Missions", program by Dr. Therese Kucera, NASA Goddard, via Zoom
JUN 2021		None Scheduled	"Association of Lunar and Planetary Observers", program by Matthew Will, Secretary \& Treasurer ALPO, via Zoom
JUL 2021		None Scheduled	Green Bank Observatory Virtual Tour and Current Projects
AUG 2021			PICNIC
SEPT 2021			SMORGASBORD (SEE BELOW)
OCT 2021			BANQUET
NOV 2021			
DEC 2021			

Editars Nate:	SMORGASBORD
Paul Levesque is willing ta	MARCH
revieu and edit any neuspa-	
per article sulemissions. Thank you	
	JUNE
All these dates and times are Tentative due to conditions! Please check your emails for any updates as to whether the Event will Occur!	
	SEPTEMBER

ASTRONOMICAL CALENDAR OF EVENTS

February

03 13:33 Moon at Perigee: 370127 km
04 11:37 LAST QUARTER MOON
06 02:33 Antares $5.5^{\circ} \mathrm{S}$ of Moon
06 18:29 Moon at Descending Node
08 08:00 Mercury at Inferior Conjunction
11 13:06 NEW MOON
1508 Mercury 3.8° of Jupiter
18 04:22 Moon at Apogee: 404467 km
18 16:47 Mars $3.7^{\circ} \mathrm{N}$ of Moon
19 12:47 FIRST QUARTER MOON
19 23:00 Venus at Aphelion
20 07:15 Aldebaran 5.0 ${ }^{\circ}$ S of Moon
20 19:44 Moon at Ascending Node
23 02:00 Mercury 4.0° of Saturn
23 19:10 Pollux $3.7^{\circ} \mathrm{N}$ of Moon
24 18:16 Beehive $2.4^{\circ} \mathrm{S}$ of Moon
26 08:04 Regulus $4.6^{\circ} \mathrm{S}$ of Moon
27 02:17 FULL MOON
The Sun starts off in Capricorn on February $1^{\text {st }}$ moving into Aquarius on the $15^{\text {th }}$.
Mercury is in Capricorn on February $1^{\text {st }}$ (mag: 1.51, dia: 9.11", illuminated 14.4%). The tiny planet is low in the W -SW. at about $4^{\circ} 29^{\prime}$ off the horizon, at 6:00 pm. Mercury moves toward inferior conjunction on the $8^{\text {th }}$. By the $28^{\text {th }}$, you can just catch the Mercury 5° off the eastern horizon. It is mag: . 18 and 45.9% illuminated. And around 7 AM it can be found with Jupiter and Saturn which are just emerging from conjunction with the Sun.

Venus is in Capricorn on February 1 (mag: -3.87, dia:10.9", illum:97.6\%). It exceptionally low in the east southeast at 7 AM . Only 3° off the horizon, the viewing only get worse the rest of the month as it moves into the Suns glare. The planet reaches Aphelion on the $19^{\text {th }}$.
Mars is in Aries n February $1^{\text {st }}$ (mag: .46, dia: 7.79", Illum: 88.6%. The red planet is quite striking however in the evening sky at 6 pm , hanging $65^{\circ} 26^{\prime}$ above the southern horizon. The 6.7day old Moon passes 3.7° south on the $18^{\text {th }}$. Mars retreats $1 / 3 \mathrm{AU}$ from Earth in February.
Jupiter Is in Capricorn on February $1^{\text {st }}$ (mag: -1.96, dia: $32.9^{\prime \prime}$) On the $24^{\text {th }}$, it is just emerging from the Suns glare and is 43^{\prime} above the $S E$ at 6 am . Catch it along with Mercury and Saturn at 7:00 am on the $28^{\text {th }}$ (See sky views). Saturn is in Capricorn on February $1^{\text {st }}$ (mag:.68, dia: 15.27" (rings (35.47). It is just emerging from the Suns glare

and is exceptionally low on the southeast horizon at 6 am . Catch it along with Mercury and Jupiter in the same position at 7:00 am on the $28^{\text {th }}$ see Sky view.
Uranus is Aries on February $1^{\text {st }}$ (mag: 5.78 , dia: $13.57^{\prime \prime}$). It is $6^{\circ} 23^{\prime} \mathrm{SW}$ of Mars in the evening sky. The 5.8-day old Moon passes $41 / 2^{\circ}$ North of Uranus on the $17^{\text {th }}$.
Neptune is in Aquarius (mag: 7.95, dia: 5.65 "). It is exceptionally low on the SW horizon at 6 pm . You may be able to catch Mercury to the right of it on the $1^{\text {st }}$ but that is about it. The Moon passes south of it on the $13^{\prime \prime}$ but the planet continues to slide into the Suns glare.
Ceres is in Aquarius (Mag:9.3) It is low in the $S W$ at 6:00 pm.
Vesta (mag: 6.7) is in western Virgo in the morning sky at 6 AM . The 18.6 day old Moon passes North of it on the $1^{\text {st. }}$.

Planetary Alignments February 2021

Phenomenon	Date and Time	Object 1	Object 2	Separation	Solar Elongation	Lunar Elongation	
Conjunction 2021-02-11 08:40:45		Jupiter	Venus	+0²5'52.1"	+10 ${ }^{\circ} 2^{\prime} 05$		49'52.9
Transit 2021-02-12 01:05:56		Jupiter	Callisto (JIV)	-	+11 ${ }^{\circ} 03 ' 51$		36'44.5'
Occultation 2021-02-20 13:02:38		Jupiter	Callisto (JIV)	-	+17 ${ }^{\circ} 39^{\prime} 02$		15'12.7
Conjunction 2021-02-12 16:20:40		Neptune	Proteus (NVIII)	+000'02.1"	$+25^{\circ} 15^{\prime} 48$		03'49.0'
Conjunction 2021-02-06 00:51:24		Saturn	Venus	+0²2'43.0"	+11 ${ }^{\circ} 48{ }^{\prime} 23$		10'01.0'
Conjunction 2021-02-08 16:34:20		Saturn	Titan (SVI)	+000'48.8'	+14 ${ }^{\circ} 10^{\prime} 56$		18'28.0'
Conjunction 2021-02-06 00:07:28		Venus	Titan (SVI)	+0²3'50.3"	+11 ${ }^{\circ} 50 ' 42$		'19.4'
Conjunction 2021-02-06 00:51:24		Venus	Saturn	+0²2'43.0"	+11 ${ }^{\circ} 50 '$		'40.0'
Conjunction 2021-02-11 07:19:53		Venus	Ganymede (JIII)	+0²5'40.1"	+10³5'30		'39.0'
Conjunction 2021-02-11 08:40:45		Venus	Jupiter	+0²5'52.1"	+10 ${ }^{\circ} 34^{\prime} 42$		'14.2'
Conjunction 2021-02-11 09:01:50		Venus	lo (J)	+0²5'55.5"	+10 ${ }^{\circ} 34^{\prime} 29$		'31.5'
Conjunction 2021-02-11 09:12:23		Venus	Europa (JII)	+0²5'57.7"	+10 ${ }^{\circ} 34^{\prime} 23$		'04.3'
Fermjetaterimm2021-02-11 09:22:56		Venus	Callisto (JIV)	+0²6'00.1"	+10 ${ }^{\circ} 34{ }^{\prime} 17$		2'33.4'
Double Stars in February							
Object		ght Ascension	Declination	Magnitude	Separation	Position Angle	Year
Eta Cassiopeiae		$00^{\mathrm{h}} 49^{\mathrm{m}} .1$	+57 ${ }^{\circ} 49^{\prime}$	3.5, 7.4	13.2"	323°	2012
65 Piscium		$00^{\mathrm{h}} 49^{\mathrm{m}} .9$	$+27^{\circ} 43^{\prime}$	6.3, 6.3	4.3 "	115°	2013
Psi 1 Piscium		$01^{\mathrm{h}} 05^{\mathrm{m}} .6$	+21 ${ }^{\circ} 28^{\prime}$	5.3, 5.4	29.7"	159°	2012
Zeta Piscium		$01^{\mathrm{h}} 13^{\mathrm{m}} .7$	+07 ${ }^{\circ} 35^{\prime}$	5.2, 6.3	22.8"	63°	2012
Gamma Arietis		$01^{\mathrm{h}} 53^{\mathrm{m}} .5$	+190 18^{\prime}	4.5, 4.6	7.2"	2°	2013
Lambda Arietis		$01^{\text {h }} 57^{\mathrm{m}} .9$	+23 ${ }^{\circ} 36$	4.8, 6.6	37.1"	48°	2012
Alpha Piscium		$02^{\mathrm{h}} 02^{\mathrm{m}} .0$	+02 ${ }^{\circ} 46{ }^{\prime}$	4.1, 5.2	1.7"	266°	2012
Gamma Andromedae		$02^{\mathrm{h}} 03^{\mathrm{m}} .9$	+42 ${ }^{\circ} 20^{\prime}$	2.3, 5.0	9.4 "	63°	2013
lota Trianguli		$02^{\mathrm{h}} 12^{\mathrm{m}} .4$	+30 ${ }^{\circ} 18^{\prime}$	5.3, 6.7	3.8"	69°	2012
Alpha Ursa Minoris		$02^{\mathrm{h}} 31^{\mathrm{m}} .8$	+89 ${ }^{\circ} 16^{\prime}$	2.1, 9.1	18.1"	233°	2013
Gamma Ceti		$02^{\mathrm{h}} 43^{\mathrm{m}} .3$	+030 $14{ }^{\prime}$	3.5, 6.2	$2.1{ }^{\prime \prime}$	$298{ }^{\circ}$	2012
Eta Persei		$02^{\mathrm{h}} 50^{\mathrm{m}} .7$	+55 ${ }^{\circ} 54^{\prime}$	3.8, 8.5	31.4"	295°	2012
Struve 331		$03^{\mathrm{h}} 00^{\mathrm{m}} .9$	+52 ${ }^{\circ} 21{ }^{\prime}$	5.2, 6.2	11.9"	85°	2012
32 Eridani		$03^{\mathrm{h}} 54^{\mathrm{m}} .3$	-02 ${ }^{\circ} 57^{\prime}$	4.8, 5.9	6.9"	348°	2013
Chi Tauri		$04^{\mathrm{h}} 22^{\mathrm{m}} .6$	+25 ${ }^{\circ} 38^{\prime}$	5.4, 8.5	20.4"	24°	2012
1 Camelopardalis		$04^{\mathrm{h}} 32^{\mathrm{m}} .0$	+53 ${ }^{\circ} 55^{\prime}$	5.8, 6.8	10.6"	308°	2012
55 Eridani		$04^{\mathrm{h}} 43^{\mathrm{m}} .6$	-08 ${ }^{\circ} 48^{\prime}$	6.7, 6.8	9.3 "	318°	2011
Beta Orionis		$05^{\mathrm{h}} 14^{\mathrm{m}} .5$	-08 ${ }^{\circ} 12^{\prime}$	0.3, 6.8	9.3 "	204°	2011
118 Tauri		$05^{\mathrm{h}} 29^{\mathrm{m}} .3$	+25 ${ }^{\circ} 09^{\prime}$	5.8, 6.7	4.7"	209°	2012
Delta Orionis		$05^{\mathrm{h}} 32^{\mathrm{m}} .0$	-00 $18{ }^{\prime}$	2.4, 6.8	52.4"	0°	2012
Struve 747		$05^{\mathrm{h}} 35^{\mathrm{m}} .0$	-06 ${ }^{\circ} 00^{\prime}$	4.7, 5.5	35.9"	226°	2014
Lamda Orionis		$05^{\mathrm{h}} 35^{\mathrm{m}} .1$	+09 ${ }^{\circ} 56$	3.5, 5.5	4.2"	44°	2012
Theta 1 Orionis		$05^{\mathrm{h}} 35^{\mathrm{m}} .3$	-05 ${ }^{\circ} 23^{\prime}$	6.6, 7.5, 5.1, 6.4	$\begin{gathered} \hline 8.9 ", 12.7^{\prime \prime} \\ 21.4^{\prime \prime} \\ \hline \end{gathered}$	$\begin{gathered} \hline 31^{\circ}, 132^{\circ}, \\ 96^{\circ} \\ \hline \end{gathered}$	2013
Iota Orionis		$05^{\mathrm{h}} 35^{\mathrm{m}} .4$	-05 55^{\prime}	2.8, 7.7	11.6"	141°	2012
Theta 2 Orionis		$05^{\mathrm{h}} 35^{\mathrm{m}} .4$	-05 ${ }^{\circ} 25^{\prime}$	5.0, 6.2	52"	93°	2012
Sigma Orionis		$05^{\mathrm{h}} 38^{\mathrm{m}} .7$	-02 ${ }^{\circ} 36$	3.8, 6.6, 3.8, 6.4	12.9", 41.3"	$84^{\circ}, 62^{\circ}$	2013
Zeta Orionis		$05^{\mathrm{h}} 40^{\mathrm{m}} .8$	$-01^{\circ} 57{ }^{\prime}$	1.9, 3.7, 9.6	2.3", 58"	$167^{\circ}, 10^{\circ}$	2013
Gamma Leporis		$05^{\mathrm{h}} 44^{\mathrm{m}} .5$	$-22^{\circ} 27^{\prime}$	3.6, 6.3	95	350°	2012
Theta Aurigae		$05^{\mathrm{h}} 59^{\mathrm{m}} .7$	+370 13^{\prime}	2.6, 7.2	4.0"	305°	2009

Navigating the February night sky: Simply start with what you know or with what you can easily find.
1 Above the northeast horizon rises the Big Dipper. Draw a line from its two end bowl stars upwards to the North Star.
2 Face south. Overhead twinkles the bright star Capella in Auriga. Jump northwestward along the Milky Way first to Perseus, then to the "W" of Cassiopeia. Next jump southeastward from Capella to the twin stars of Castor and Pollux in Gemini.
3 Directly south of Capella stands the constellation of Orion with its three Belt stars, its bright red star Betelgeuse, and its bright blue-white star Rigel.
4 Use Orion's three Belt stars to point northwest to the red star Aldebaran and the Hyades star cluster, then to the Plelades star cluster. Travel southeast from the Belt stars to the brightest star in the night sky, Sirius, a member of the Winter Triangle.

Binocular Highlights

A: Examine the stars of two naked eye star clusters, the Pleiades and the Hyades.
B: Between the "W" of Cassiopela and Perseus lies the Double Cluster.
C: The three westernmost stars of Cassiopeia's "W" point south to M31, the Andromeda Galaxy, a "fuzzy" oval. D: M42 in Orion is a star forming nebula. E+ Look south of Sirius for the star cluster M41. Fi M44, a star cluster barely visible to the naked eye, lies southeast of Pollux.

Astronomical League www.astroleague.org/outreach; duplication is allowed and encouraged for all free distribution.

On February 6, 1971, astronaut Alan Shepard, commander of Apollo 14, became the first-and so far only-person to hit a golf ball on the Moon.

Subject: FB Post - 12-2120 - Ken Boquist Conjunction picture taken 12-20, , 2020
Ken's picture may be a Facebook record for PAC. 1941 views
19 shares.

Spotlight: IC 405 Flaming Star Nebula

IC 405 (also known as the Flaming Star Nebula, SH 2-229, or Caldwell 31) is an emission and reflection nebula in the constellation Auriga, surrounding the bluish star AE Auriga. It shines at magnitude +6.0 . Its celestial coordinates are RA $05^{\text {h }} 16.2^{\mathrm{m}}$ dec $+34^{\circ} 28^{\prime}$. It surrounds the irregular variable star AE Auriga and is located near the emission nebula IC 410, the open clusters M38 and M36, and the Kclass star lota Auriga. The nebula measures approximately 37.0' x 19.0', and lies about 1,500 light-years away from Earth. It is believed that the proper motion of the central star can be traced back to the Orion's Belt area. The nebula is about 5 lightyears across .

The Perseverance rover and Ingenuity helicopter will land in Mars's Jezero crater on February 18, 2021, NASA's latest mission to explore the red planet. Landing on Mars is an incredibly difficult feat that has challenged engineers for decades: while missions like Curiosity have succeeded, its surface is littered with the wreckage of many failures as well. Why is landing on Mars so difficult?
Mars presents a unique problem to potential landers as it possesses a relatively large mass and a thin, but not insubstantial, atmosphere. The atmosphere is thick enough that spacecraft are stuffed inside a streamlined aeroshell sporting a protective heat shield to prevent burning up upon entry - but that same atmosphere is not thick enough to rely on parachutes alone for a safe landing, since they can't catch sufficient air to slow down quickly enough. This is even worse for larger explorers like Perseverance, weighing in at $2,260 \mathrm{lbs}(1,025 \mathrm{~kg})$. Fortunately, engineers have crafted some ingenious landing methods over the decades to allow their spacecraft to survive what is called Entry, Descent, and Landing (EDL). The Viking landers touched down on Mars in 1976 using heat shields, parachutes, and retrorockets. Despite using large parachutes, the large Viking landers fired retrorockets at the end to land at a safe speed.

This article is distributed by NASA Night Sky Network The Night Sky Network program supports astronomy clubs across the USA dedicated to astronomy outreach. Visit https://nightsky.jpl.nasa.gov/ to find local clubs, events, and more!

This complex combination has been followed by almost every mission since, but subsequent missions have innovated in the landing segment. The 1997 Mars Pathfinder mission added airbags in conjunction with parachutes and retrorockets to safely bounce its way to a landing on the Martian surface. Then three sturdy "petals" ensured the lander was pushed into an upright position after landing on an ancient floodplain. The Opportunity and Spirit missions used a very similar method to place their rovers on the Martian surface in 2004. Phoenix (2008) and Insight (2018) actually utilized Viking-style landings. The large and heavy Curiosity rover required extra power at the end to safely land the car-sized rover, and so the daring "Sky Crane" deployment system was successfully used in 2012. After an initial descent using a massive heat shield and parachute, powerful retrorockets finished slowing down the spacecraft to about 2 miles per hour. The Sky Crane then safely lowered the rover down to the Martian surface using a strong cable. Its job done, the Sky Crane then flew off and crash-landed a safe distance away. Having proved the efficacy of the Sky Crane system, NASA will use this same method to attempt a safe landing for Perseverance this month!

Check Your Sky's Quality with Orion!

David Prosper

You can watch coverage of the Mars Perseverance landing starting at 11:00 AM PST (2:00 PM EST) on February 18 at nasa.gov/nasalive. Touchdown is expected around $12: 55$ PM PST (3:55 PM EST).

NASA has great resources about the Perseverance Rover and accompanying Ingenuity helicopter on mars.nasa.gov/mars2020. And of course, find out how we plan to land on many different worlds at nasa.gov.

I(left and below) lustrations of the Entry, Descent, and Landing (EDL) sequences for Viking in 1976, and Perseverance in 2021. Despite the wide gap between these missions in terms of technology, they both performed their landing maneuvers automatically, since our planets are too far apart to allow Earthbased engineers to control them in real time! (NASA/ JPL/Caltech)

NEWSC゚LINKS

Citizen astronomers map near-Earth asteroid

December 29th, 2020

1

f a planet has a lot of methane in its atmosphere, life is the most likely cause

December 24th, 2020

Japanese spacecraft's gifts: Asteroid chips like charcoal

December 24th, 2020

Chinese astronomers discover 591 highvelocity stars with LAMOST and Gaia

December 28th, 2020

NEWSçLINKS

The moon may have far more lunar craters than previously known

December 23rd, 2020

A weirdly warped planet-forming disk circles a distant trio of stars

September 3rd, 2020

December's stunning Geminid meteor shower is born from a humble asteroid

December 2nd, 2020

The Milky Way's central black hole may have turned nearby red giant stars blue

December 14th, 2020

NEWSçLINKS

Astronomers Create Radio Map of Perseus Galaxy Cluster

January 4th, 2021

Hubble Looks at Face-On Spiral Galaxy NGC 6946

January 4th, 2021

Gravitational Waves May Help Find Universe's Missing Components

December 31st 2020
0

Astronomers Capture a Direct Image of a
Brown Dwarf

December 30th, 2021

NEWS $\mathcal{C L I N K S}$

Asteroids Crashing Into Dead Stars are Helping Explain Where the Universe's Missing

December 28th, 2020

Even the Outside of Hayabusa 2's Sample Capsule has Asteroid Debris on it

December 26th, 2020

A Single Filament of Gas Has Been Discovered That Stretches 50 Million Light-Years

December 25th, 2020

This galaxy took only 500 million years to form

December 21st, 2020

NEWSCLINKS

NASA Has Given Up on Trying to Deploy InSight's Mole

January 14th, 2021

Winning Urban Farming Ideas for Mars!

January 9th, 2021

The Fireworks Galaxy. It's had ten Supernovae in the Last Century Alone

The Mystery of Sunquakes is Deep; One Million Meters Deep!

January 11th, 2021

MEMBER OBSERVATIONS

5 Dec 2020

The followire pictures were shat in mock sland, it at the times inditated below. A tumt 50 mm hydrogen-algha scope that was double-stacked for an effectiae aperture of 50 mm was used. Seeing wars estimated to be a 2 out of 10 , and transparency was 6 out of 6 [transparency is besed on the Astronomical teagues' tansparency stale for the
 and processed the same.

\qquad

The following picture is a copy of the 17:56 UT image. The arrow is pointine to a sunspet, which is visitie in all feur of the images above. Seeing sunspots in a irputrogetalpha lmage is not very common.

Photos by Ken Boquist

2020-11-26 1952U - Lunt H-Alpha Double Stack - DS287m Long reducer Surface - 1X - G1 - Eo.813ms - Co - GM1 - S7-T5-1500 of 6000 frames -

Ken Boquist

2020-11-26 2004U - Lunt H-Alpha Double Stack - DS287m Long reducer - Surface Close-up - 2.5X - G1 - E1.191ms - Co - GMo.9-S7-T5-1500 of 6000 frames

Ken Boquist

MEMBER OBSERVATIONS

M027 (Dumbbell Nebula) -2020-12-06 0058U-9.25 f10E 40 Sec sec X 11 - G10 DSıoc - Baader filter - RI Processed Ken Boquist

MAMBER OBSERVATIONS

M042-2020-11-20 0713U

- 9.25 f6.3-E Various sec
X 149-G40 - DS 10c - UHC
filter - RI - Processed
Ken Boquist
, ,

MEMBER OBSERVATIONS

NGC 0891-2021-11-20 0626U-
RI-9.25 f6.3-DS10c no red-
UHC-G40-E20 secx12-C0-
G0.86-Add 2-BP27 P55
WP200-DFC-B0-S0-See6 of 10-
Tr3 Processed (2)
Ken Boquist

NGC 1499
(California Nebula)

- 2020-12-26

0244U-80mm f6.8

- E 48 Sec sec X 25

G10-DS10c - L-
enhance filter - RI
Compressed
Ken Boquist

MEMBER OBSERVATIONS

NGC 6826-2020-12-10
0153U - 9.25 F10 - E 5
Sec sec X $36-$ G40 -
DS10c - UHC filter - RI -
Processed - cropped (2)

MEMBER OBSERVATIONS

NGC 7293-2020-12-05
$0034 \mathrm{U}-9.25$ F10 - E 20
sec sec X 30 - G80 -
DS10c - L-enHance filter -
Castle
Ken Boquist

MEMBER OBSERVATIONS

NGC 7635-2020-11-18 0320U-5.1 f8-E 15 sec X 30 - G25 - DS287c - LenHance filter - RI - Processed
Ken Boquist

NGC 7331-2020-11-14 0318U - 9.25 f6.3-E 5 Sec sec X 120 - G40DS10c - No filter - Menke (2)
Ken Boquist

MEMBER OBSERVATIONS

Sh 2-101-2020-11-16
0124U-5.1 f8-E 25 Sec sec X 30 - G20 - DS10c - LenHance filter - RI (2)
Ken Boquist

Sh 2-104-2020-11-16
0354U-5.1 f8-E 10 Sec sec X 10 - G40-DS10c - LenHance filter - RI (2)
Ken Boquist

MAMBER OBSERVATIONS

Sh 2-112-2020-10-07 0250U - 80mm f6.8-E 15 sec X 24 - G40-DS10c - LenHance filter - RI - Processed (2) Ken Boquist

Sh 2-155 (Cave Nebula) -2020-11-16 0235U-5.1 f8 - E 10 Sec sec X 25 - G40DS 10c - L-enHance filter RI - Processed (2) Ken Boquist

MAMBER OBSERVATIONS

Westerhout 5 (Soul Nebula) - 2020-12-10 0310U 80 mm f6.8-E 20 Sec sec X 18 - G40-DS10c - LenHance filter - RI Processed
Ken Boquist

PAUL CASTLE OBSERVATORY OBSERVING SESSIONS

Photo (left) by
Gary Nordick Checking out the observatory This is the revised Paul Castle Page In the newsletter

President Alan Sheidler arranged (with the help of Dale Hachtel) for the January 2021 meeting of the Popular Astronomy Club to be conducted via Zoom at 7:00 p.m. local time, on January 11th, 2021. We had 19 members, 4 guests .

President Al Sheidler introduced our speaker for the evening. Chuck Allen from The Astronomical League who gave attendees a talk on:

The Cosmic Horizons

Cosmic Horizons explore the limits of human visibility imposed by planetary curvature, photon sensitivity of the human eye, and the speed of light in an expanding universe. We briefly explore the definition of planetary horizons and the role of planetary size in defining them. Next, we examine the faintest astronomical objects we can see with and without optical aid, and the smallest number of photons theoretically detectable by humans. Finally, we discuss the four horizons imposed by time and the speed of light (the Hubble distance, cosmic particle horizon, cosmic event horizon, and future visibility horizon) and consider how these horizons change in an accelerating universe and what effect they have on what we can, or ever will, see.

Al then shared some dome photos that he had received from members. Byron had a nice a photo of M42 and The Horsehead Nebula and the Pleiades.

Paul Levesque also had managed to view the Jupiter Saturn conjunction.

Also shown were Rusty's photos of the conjunction.
.Also saw some of Al's photos.

